316 research outputs found

    Immittance Matching for Multi-dimensional Open-system Photonic Crystals

    Full text link
    An electromagnetic (EM) Bloch wave propagating in a photonic crystal (PC) is characterized by the immittance (impedance and admittance) of the wave. The immittance is used to investigate transmission and reflection at a surface or an interface of the PC. In particular, the general properties of immittance are useful for clarifying the wave propagation characteristics. We give a general proof that the immittance of EM Bloch waves on a plane in infinite one- and two-dimensional (2D) PCs is real when the plane is a reflection plane of the PC and the Bloch wavevector is perpendicular to the plane. We also show that the pure-real feature of immittance on a reflection plane for an infinite three-dimensional PC is good approximation based on the numerical calculations. The analytical proof indicates that the method used for immittance matching is extremely simplified since only the real part of the immittance function is needed for analysis without numerical verification. As an application of the proof, we describe a method based on immittance matching for qualitatively evaluating the reflection at the surface of a semi-infinite 2D PC, at the interface between a semi-infinite slab waveguide (WG) and a semi-infinite 2D PC line-defect WG, and at the interface between a semi-infinite channel WG and a semi-infinite 2D PC slab line-defect WG.Comment: 8 pages, 6 figure

    Magnetized Accretion-Ejection Structures: 2.5D MHD simulations of continuous Ideal Jet launching from resistive accretion disks

    Full text link
    We present numerical magnetohydrodynamic (MHD) simulations of a magnetized accretion disk launching trans-Alfvenic jets. These simulations, performed in a 2.5 dimensional time-dependent polytropic resistive MHD framework, model a resistive accretion disk threaded by an initial vertical magnetic field. The resistivity is only important inside the disk, and is prescribed as eta = alpha_m V_AH exp(-2Z^2/H^2), where V_A stands for Alfven speed, H is the disk scale height and the coefficient alpha_m is smaller than unity. By performing the simulations over several tens of dynamical disk timescales, we show that the launching of a collimated outflow occurs self-consistently and the ejection of matter is continuous and quasi-stationary. These are the first ever simulations of resistive accretion disks launching non-transient ideal MHD jets. Roughly 15% of accreted mass is persistently ejected. This outflow is safely characterized as a jet since the flow becomes super-fastmagnetosonic, well-collimated and reaches a quasi-stationary state. We present a complete illustration and explanation of the `accretion-ejection' mechanism that leads to jet formation from a magnetized accretion disk. In particular, the magnetic torque inside the disk brakes the matter azimuthally and allows for accretion, while it is responsible for an effective magneto-centrifugal acceleration in the jet. As such, the magnetic field channels the disk angular momentum and powers the jet acceleration and collimation. The jet originates from the inner disk region where equipartition between thermal and magnetic forces is achieved. A hollow, super-fastmagnetosonic shell of dense material is the natural outcome of the inwards advection of a primordial field.Comment: ApJ (in press), 32 pages, Higher quality version available at http://www-laog.obs.ujf-grenoble.fr/~fcass

    Measurement of solution parameters on sonication decellularization treatment

    Get PDF
    We have developed a sonication decellularization system to decellularized biological scaffolds in short time by combining sonication and chemical method. The aim of this study is to investigate decellularization efficiency on the different treated solution parameters. As a result, decreasing of dissolved oxygen (DO) would increase the conductivity and pH of decellularization solution, and decreasing of pH would increase conductivity. We found that the solution concentrationhas relation to its parameters and may influence the efficiency of sonication decellularization treatment

    Is CP Violation Observable in Long Baseline Neutrino Oscillation Experiments ?

    Get PDF
    We have studied CP violation originated by the phase of the neutrino mixing matrix in the long baseline neutrino oscillation experiments. The direct measurements of CP violation is the difference of the transition probabilities between CP-conjugate channels. In those experiments, the CP violating effect is not suppressed if the highest neutrino mass scale is taken to be 1\sim 5 \eV, which is appropriate for the cosmological hot dark matter. Assuming the hierarchy for the neutrino masses, the upper bounds of CP violation have been caluculated for three cases, in which mixings are constrained by the recent short baseline ones. The calculated upper bounds are larger than 10210^{-2}, which will be observable in the long baseline accelerator experiments. The matter effect, which is not CP invariant, has been also estimated in those experiments.Comment: 28 pages, LaTex file, 6 figures included using epsfig Matter effect is estimated(Figs.3(a) (b)). Physical parameters are change

    Radiatively inefficient MHD accretion-ejection structures

    Full text link
    We present magnetohydrodynamic simulations of a resistive accretion disk continuously launching transmagnetosonic, collimated jets. We time-evolve the full set of magnetohydrodynamic equations, but neglect radiative losses in the energetics (radiatively inefficient). Our calculations demonstrate that a jet is self-consistently produced by the interaction of an accretion disk with an open, initially bent large-scale magnetic field. A constant fraction of heated disk material is launched in the inner equipartition disk regions, leading to the formation of a hot corona and a bright collimated, super-fastmagnetosonic jet. We illustrate the complete dynamics of the ``hot'' near steady-state outflow (where thermal pressure \simeq magnetic pressure) by showing force balance, energy budget and current circuits. The evolution to this near stationary state is analyzed in terms of the temporal variation of energy fluxes controlling the energetics of the accretion disk. We find that unlike advection-dominated accretion flow, the energy released by accretion is mainly sent into the jet rather than transformed into disk enthalpy. These magnetized, radiatively inefficient accretion-ejection structures can account for under-luminous thin disks supporting bright fast collimated jets as seen in many systems displaying jets (for instance M87).Comment: Astrophysical Journal (in press). Figures are missing due to file size restrictions. To have the complete paper just click on http://www-laog.obs.ujf-grenoble.fr/~fcasse/MS56638.pd

    Natural Neutrino Mass Matrix

    Get PDF
    Naturalness of the neutrino mass hierarchy and mixing is studied. First we select among 12 neutrino mixing patterns a few patterns, which could form the natural neutrino mass matrix. Further we show that if the Dirac neutrino mass matrix is taken as the natural one in the quark sector, then only two mixing patterns without the large mixing lead to the natural right-handed Majorana mass matrix. The rest of the chosen patterns with three degenerate mass solution lead to the unnatural right-handed Majorana mass matrix in the see-saw mechanism. Notice however, that for the chosen two natural patterns there could be a huge mass hierarchy such as O(1046){\cal O}(10^{4\sim 6}) in order to reproduce the inverse mass hierarchy of the light neutrinos.Comment: 31 pages, LaTex file, no figures, arguments made more clear, main conclusions unchanged, version accepted for publication in PRD Reort-no: Lund-Mph-97/14 Revise

    Muon-anti-neutrino <---> electron-anti-neutrino mixing: analysis of recent indications and implications for neutrino oscillation phenomenology

    Get PDF
    We reanalyze the recent data from the Liquid Scintillator Neutrino Detector (LSND) experiment, that might indicate anti-nu_muanti-nu_e mixing. This indication is not completely excluded by the negative results of established accelerator and reactor neutrino oscillation searches. We quantify the region of compatibility by means of a thorough statistical analysis of all the available data, assuming both two-flavor and three-flavor neutrino oscillations. The implications for various theoretical scenarios and for future oscillation searches are studied. The relaxation of the LSND constraints under different assumptions in the statistical analysis is also investigated.Comment: 17 pages (RevTeX) + 9 figures (Postscript) included with epsfig.st

    Micromechanical modeling of tension stiffening in FRP-strengthened concrete elements

    Get PDF
    This article presents a micromodeling computational framework for simulating the tensile response and tension-stiffening behavior of fiber reinforced polymer–strengthened reinforced concrete elements. The total response of strengthened elements is computed based on the local stress transfer mechanisms at the crack plane including concrete bridging stress, reinforcing bars stress, FRP stress, and the bond stresses at the bars-to-concrete and fiber reinforced polymer-to-concrete interfaces. The developed model provides the possibility of calculating the average response of fiber reinforced polymer, reinforcing bars, and concrete as well as the crack spacing and crack widths. The model, after validation with experimental results, is used for a systematic parameter study and development of micromechanics-based relations for calculating the crack spacing, fiber reinforced polymer critical ratio, debonding strength, and effective bond length. Constitutive models are also proposed for concrete tension stiffening and average response of steel reinforcing bars in fiber reinforced polymer–strengthened members as the main inputs of smeared crack modeling approaches
    corecore