294 research outputs found

    Long-distance entanglement-based quantum key distribution over optical fiber

    Get PDF
    We report the first entanglement-based quantum key distribution (QKD) experiment over a 100-km optical fiber. We used superconducting single photon detectors based on NbN nanowires that provide high-speed single photon detection for the 1.5-µm telecom band, an efficient entangled photon pair source that consists of a fiber coupled periodically poled lithium niobate waveguide and ultra low loss filters, and planar lightwave circuit Mach-Zehnder interferometers (MZIs) with ultra stable operation. These characteristics enabled us to perform an entanglement-based QKD experiment over a 100-km optical fiber. In the experiment, which lasted approximately 8 hours, we successfully generated a 16 kbit sifted key with a quantum bit error rate of 6.9 % at a rate of 0.59 bits per second, from which we were able to distill a 3.9 kbit secure key

    Megabits secure key rate quantum key distribution

    Full text link
    Quantum cryptography (QC) can provide unconditional secure communication between two authorized parties based on the basic principles of quantum mechanics. However, imperfect practical conditions limit its transmission distance and communication speed. Here we implemented the differential phase shift (DPS) quantum key distribution (QKD) with up-conversion assisted hybrid photon detector (HPD) and achieved 1.3 M bits per second secure key rate over a 10-km fiber, which is tolerant against the photon number splitting (PNS) attack, general collective attacks on individual photons, and any other known sequential unambiguous state discrimination (USD) attacks.Comment: 14 pages, 4 figure

    Transport Phenomena at a Critical Point -- Thermal Conduction in the Creutz Cellular Automaton --

    Full text link
    Nature of energy transport around a critical point is studied in the Creutz cellular automaton. Fourier heat law is confirmed to hold in this model by a direct measurement of heat flow under a temperature gradient. The thermal conductivity is carefully investigated near the phase transition by the use of the Kubo formula. As the result, the thermal conductivity is found to take a finite value at the critical point contrary to some previous works. Equal-time correlation of the heat flow is also analyzed by a mean-field type approximation to investigate the temperature dependence of thermal conductivity. A variant of the Creutz cellular automaton called the Q2R is also investigated and similar results are obtained.Comment: 27 pages including 14figure

    Antibiotic cycling versus mixing: the difficulty of using mathematical models to definitively quantify their relative merits.

    Get PDF
    Published PDF version deposited in accordance with SHERPA RoMEO guidelines.We ask the question Which antibiotic deployment protocols select best against drug-resistant microbes: mixing or periodic cycling? and demonstrate that the statistical distribution of the performances of both sets of protocols, mixing and periodic cycling, must have overlapping supports. In other words, it is a general, mathematical result that there must be mixing policies that outperform cycling policies and vice versa. As a result, we agree with the tenet of Bonhoefer et al. [1] that one should not apply the results of [2] to conclude that an antibiotic cycling policy that implements cycles of drug restriction and prioritisation on an ad-hoc basis can select against drug-resistant microbial pathogens in a clinical setting any better than random drug use. However, nor should we conclude that a random, per-patient drug-assignment protocol is the de facto optimal method for allocating antibiotics to patients in any general sense

    Theory of superconductivity of carbon nanotubes and graphene

    Full text link
    We present a new mechanism of carbon nanotube superconductivity that originates from edge states which are specific to graphene. Using on-site and boundary deformation potentials which do not cause bulk superconductivity, we obtain an appreciable transition temperature for the edge state. As a consequence, a metallic zigzag carbon nanotube having open boundaries can be regarded as a natural superconductor/normal metal/superconductor junction system, in which superconducting states are developed locally at both ends of the nanotube and a normal metal exists in the middle. In this case, a signal of the edge state superconductivity appears as the Josephson current which is sensitive to the length of a nanotube and the position of the Fermi energy. Such a dependence distinguishs edge state superconductivity from bulk superconductivity.Comment: 5 pages, 2 figure

    Experimental Quantum Cryptography with Qutrits

    Full text link
    We produce two identical keys using, for the first time, entangled trinary quantum systems (qutrits) for quantum key distribution. The advantage of qutrits over the normally used binary quantum systems is an increased coding density and a higher security margin. The qutrits are encoded into the orbital angular momentum of photons, namely Laguerre-Gaussian modes with azimuthal index l +1, 0 and -1, respectively. The orbital angular momentum is controlled with phase holograms. In an Ekert-type protocol the violation of a three-dimensional Bell inequality verifies the security of the generated keys. A key is obtained with a qutrit error rate of approximately 10 %.Comment: New version includes additional references and a few minor changes to the manuscrip
    • …
    corecore