460 research outputs found

    Development of a beamline for the study of interactions between a relativistic electron beam and crystals at the SAGA Light Source

    Get PDF
    A beamline dedicated to the study of interactions of a relativistic electron beam with crystals has been designed and constructed at the SAGA Light Source (SAGA-LS). This beamline consists of a compact two-axis goniometer in a vacuum chamber and two screen monitors placed downstream of the goniometer. An electron beam is provided from the SAGA-LS injector linac. The beam parameters such as the beam emittance and the Twiss parameters have been measured using the “Q-scan method”. Proposals for experiments on channeling radiation and parametric X-ray radiation are also discussed

    Spin frustration and magnetic ordering in theS=12molecular antiferromagnetfcc−Cs3C60

    Get PDF
    We have investigated the low-temperature magnetic state of face-centered-cubic (fcc) Cs3C60, a Mott insulator and the first molecular analog of a geometrically frustrated Heisenberg fcc antiferromagnet with S=1/2 spins. Specific heat studies reveal the presence of both long-range antiferromagnetic ordering and a magnetically disordered state below TN=2.2 K, which is in agreement with local probe experiments. These results together with the strongly suppressed TN are unexpected for conventional atom-based fcc antiferromagnets, implying that the fulleride molecular degrees of freedom give rise to the unique magnetic ground state

    Two-electronic component behavior in the multiband FeSe0.42_{0.42}Te0.58_{0.58} superconductor

    Get PDF
    We report X-band EPR and 125^{125}Te and 77^{77}Se NMR measurements on single-crystalline superconducting FeSe0.42_{0.42}Te0.58_{0.58} (TcT_c = 11.5(1) K). The data provide evidence for the coexistence of intrinsic localized and itinerant electronic states. In the normal state, localized moments couple to itinerant electrons in the Fe(Se,Te) layers and affect the local spin susceptibility and spin fluctuations. Below TcT_c, spin fluctuations become rapidly suppressed and an unconventional superconducting state emerges in which 1/T11/T_1 is reduced at a much faster rate than expected for conventional ss- or s±s_\pm-wave symmetry. We suggest that the localized states arise from the strong electronic correlations within one of the Fe-derived bands. The multiband electronic structure together with the electronic correlations thus determine the normal and superconducting states of the FeSe1x_{1-x}Tex_x family, which appears much closer to other high-TcT_c superconductors than previously anticipated.Comment: 5 pages, 4 figure

    Jahn-Teller orbital glass state in the expanded fcc Cs3C60 fulleride

    Get PDF
    The most expanded fcc-structured alkali fulleride, Cs3C60, is a Mott insulator at ambient pressure because of the weak overlap between the frontier t1u molecular orbitals of the C603− anions. It has a severely disordered antiferromagnetic ground state that becomes a superconductor with a high critical temperature, Tc of 35 K upon compression. The effect of the localised t1u3 electronic configuration on the properties of the material is not well-understood. Here we study the relationship between the intrinsic crystallographic C603− orientational disorder and the molecular Jahn–Teller (JT) effect dynamics in the Mott insulating state. The high-resolution 13C magic-angle-spinning (MAS) NMR spectrum at room temperature comprises three peaks in the intensity ratio 1:2:2 consistent with the presence of three crystallographically-inequivalent carbon sites in the fcc unit cell and revealing that the JT-effect dynamics are fast on the NMR time-scale of 10−5 s despite the presence of the frozen-in C603− merohedral disorder disclosed by the 133Cs MAS NMR fine splitting of the tetrahedral and octahedral 133Cs resonances. Cooling to sub-liquid-nitrogen temperatures leads to severe broadening of both the 13C and 133Cs MAS NMR multiplets, which provides the signature of an increased number of inequivalent 13C and 133Cs sites. This is attributed to the freezing out of the C603− JT dynamics and the development of a t1u electronic orbital glass state guided by the merohedral disorder of the fcc structure. The observation of the dynamic and static JT effect in the Mott insulating state of the metrically cubic but merohedrally disordered Cs3C60 fulleride in different temperature ranges reveals the intimate relation between charge localization, magnetic ground state, lifting of electronic degeneracy, and orientational disorder in these strongly-correlated systems

    Upper critical field reaches 90 tesla near the Mott transition in fulleride superconductors

    Get PDF
    分子からなる超伝導体が従来超伝導線材を凌駕する臨界磁場90テスラを達成 -分子性固体における超伝導材料開発の新たな指針-. 京都大学プレスリリース. 2017-02-20

    Diffracted diffraction radiation and its application to beam diagnostics

    Get PDF
    We present theoretical considerations for diffracted diffraction radiation and also propose an application of this process to diagnosing ultra-relativistic electron (positron) beams for the first tim

    Planar channelling of relativistic electrons in half-wave silicon crystal and corresponding radiation

    Get PDF
    New experimental data on planar channeling of 255 MeV electrons in a 0.74 µm Si Half-Wave Crystal (HWC) obtained at SAGA-LS facility are presented. The computer simulation showed that the angular distribution of electrons after penetration through the HWC revealed the number of unknown before peculiarities is connected with specific electron trajectories in HWC. These specific trajectories lead to specific radiation, the properties of which are analyzed

    Effects of Disorder in FeSe : An Ab Initio Study

    Full text link
    Using the coherent-potential approximation, we have studied the effects of excess Fe, Se-deficiency, and substitutions of S, Te on Se sub-lattice and Co, Ni and Cu on Fe sub-lattice in FeSe. Our results show that (i) a small amount of excess Fe substantially disorders the Fe-derived bands while Se-deficiency affects mainly the Se-derived bands, (ii) the substitution of S or Te enhances the possibility of Fermi surface nesting, specially in FeSe0.5_{0.5}Te0.5_{0.5}, in spite of disordering the Se-derived bands, (iii) the electron doping through Co, Ni or Cu disorders the system and pushes down the Fe-derived bands, thereby destroying the possibility of Fermi surface nesting. A comparison of these results with the rigid-band, virtual-crystal and supercell approximations reveals the importance of describing disorder with the coherent-potential approximation.Comment: Redone VCA calculations, and some minor changes. (Accepted for publication in Journal of Physics:Condensed Matter
    corecore