306 research outputs found

    When Does Competition Lead to Efficient Investments?

    Get PDF
    The paper studies agents’ investment decisions between general and speci…c in-vestments under di¤erent ownership structures in a thin, decentralized market where each agent’s decision a¤ects the decisions and welfare of other (otherwise unrelated) agents mainly through indirect market linkages. The paper demonstrates that “excess competition among investors,” in every equilibrium, will lead to e¢cient investments, regardless of asset ownership. In the absence of such excess competition, in every equilibrium, ine¢cient investments will result, unless some special ownership arrange-ment is made. The problem in which the choice variable is investment level, instead of investment type, is also studied.

    Mass dependence of the hairpin vertex in quenched QCD

    Full text link
    The pseudoscalar ``hairpin'' vertex (i.e. quark-disconnected vertex) plays a key role in quenched chiral perturbation theory. Direct calculations using lattice simulations find that it has a significant dependence on quark mass. I show that this mass dependence can be used to determine the quenched Gasser-Leutwyler constant L5. This complements the calculation of L5 using the mass dependence of the axial decay constant of the pion. In an appendix, I discuss power counting for quenched chiral perturbation theory and describe the particular scheme used in this paper.Comment: 12 pages, 4 figures. Version to appear in Phys. Rev. D. Central result unchanged, but explanation of calculation improved and minor errors corrected. New appendix discusses power counting schemes in quenched chiral perturbation theor

    Freeze-In Production of FIMP Dark Matter

    Get PDF
    We propose an alternate, calculable mechanism of dark matter genesis, "thermal freeze-in," involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional "thermal freeze-out" production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale-suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis.Comment: 30 pages, 7 figures, PDFLaTex. References adde

    Systematic Identification of Placental Epigenetic Signatures for the Noninvasive Prenatal Detection of Edwards Syndrome

    Get PDF
    Background: Noninvasive prenatal diagnosis of fetal aneuploidy by maternal plasma analysis is challenging owing to the low fractional and absolute concentrations of fetal DNA in maternal plasma. Previously, we demonstrated for the first time that fetal DNA in maternal plasma could be specifically targeted by epigenetic (DNA methylation) signatures in the placenta. By comparing one such methylated fetal epigenetic marker located on chromosome 21 with another fetal genetic marker located on a reference chromosome in maternal plasma, we could infer the relative dosage of fetal chromosome 21 and noninvasively detect fetal trisomy 21. Here we apply this epigenetic-genetic (EGG) chromosome dosage approach to detect Edwards syndrome (trisomy 18) in the fetus noninvasively. Principal Findings: We have systematically identified methylated fetal epigenetic markers on chromosome 18 by methylated DNA immunoprecipitation (MeDIP) and tiling array analysis with confirmation using quantitative DNA methylation assays. Methylated DNA sequences from an intergenic region between the VAPA and APCDD1 genes (the VAPAAPCDD1 DNA) were detected in pre-delivery, but not post-delivery, maternal plasma samples. The concentrations correlated positively with those of an established fetal genetic marker, ZFY, in pre-delivery maternal plasma. The ratios of methylated VAPA-APCDD1(chr18) to ZFY(chrY) were higher in maternal plasma samples of 9 male trisomy 18 fetuses than those of 27 male euploid fetuses (Mann-Whitney test, P = 0.029). We defined the cutoff value for detecting trisomy 18 fetuses as mean+1.96 SD of the EGG ratios of the euploid cases. Eight of 9 trisomy 18 and 1 of 27 euploid cases showed EGG ratios higher than the cutoff value, giving a sensitivity of 88.9% and a specificity of 96.3%. Conclusions: Our data have shown that the methylated VAPA-APCDD1 DNA in maternal plasma is redominantly derived from the fetus. We have demonstrated that this novel fetal epigenetic marker in maternal plasma is useful for the noninvasive detection of fetal trisomy 18. © Tsui et al.published_or_final_versio

    A simple and rapid approach for screening of SARS-coronavirus genotypes: an evaluation study

    Get PDF
    BACKGROUND: The Severe Acute Respiratory Syndrome (SARS) was a newly emerged infectious disease which caused a global epidemic in 2002–2003. Sequence analysis of SARS-coronavirus isolates revealed that specific genotypes predominated at different periods of the epidemic. This information can be used as a footprint for tracing the epidemiology of infections and monitor viral evolution. However, direct sequencing analysis of a large number of clinical samples is cumbersome and time consuming. We present here a simple and rapid assay for the screening of SARS-coronavirus genotypes based on the use of fluorogenic oligonucleotide probes for allelic discrimination. METHODS: Thirty SARS patients were recruited. Allelic discrimination assays were developed based on the use of fluorogenic oligonucleotide probes (TaqMan). Genotyping of the SARS-coronavirus isolates obtained from these patients were carried out by the allelic discrimination assays and confirmed by direct sequencing. RESULTS: Genotyping based on the allelic discrimination assays were fully concordant with direct sequencing. All of the 30 SARS-coronavirus genotypes studied were characteristic of genotypes previously documented to be associated with the latter part of the epidemic. Seven of the isolates contained a previously reported major deletion but in patients not epidemiologically related to the previously studied cohort. CONCLUSION: We have developed a simple and accurate method for the characterization and screening of SARS-coronavirus genotypes. It is a promising tool for the study of epidemiological relationships between documented cases during an outbreak

    Groups and protocluster candidates in the CLAUDS and HSC-SSP joint deep surveys

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMUsing the extended halo-based group finder developed by Yang et al., which is able to deal with galaxies via spectroscopic and photometric redshifts simultaneously, we construct galaxy group and candidate protocluster catalogs in a wide redshift range (0 2.0. By checking the galaxy number distributions within a 5-7 h -1Mpc projected separation and a redshift difference Δz ≤ 0.1 around those richest groups at redshift z > 2, we identify lists of 761, 343, and 43 protocluster candidates in the redshift bins 2 ≤ z < 3, 3 ≤ z < 4, and z ≥ 4, respectively. In general, these catalogs of galaxy groups and protocluster candidates will provide useful environmental information in probing galaxy evolution along cosmic tim

    Jet Shapes and Jet Algorithms in SCET

    Get PDF
    Jet shapes are weighted sums over the four-momenta of the constituents of a jet and reveal details of its internal structure, potentially allowing discrimination of its partonic origin. In this work we make predictions for quark and gluon jet shape distributions in N-jet final states in e+e- collisions, defined with a cone or recombination algorithm, where we measure some jet shape observable on a subset of these jets. Using the framework of Soft-Collinear Effective Theory, we prove a factorization theorem for jet shape distributions and demonstrate the consistent renormalization-group running of the functions in the factorization theorem for any number of measured and unmeasured jets, any number of quark and gluon jets, and any angular size R of the jets, as long as R is much smaller than the angular separation between jets. We calculate the jet and soft functions for angularity jet shapes \tau_a to one-loop order (O(alpha_s)) and resum a subset of the large logarithms of \tau_a needed for next-to-leading logarithmic (NLL) accuracy for both cone and kT-type jets. We compare our predictions for the resummed \tau_a distribution of a quark or a gluon jet produced in a 3-jet final state in e+e- annihilation to the output of a Monte Carlo event generator and find that the dependence on a and R is very similar.Comment: 62 pages plus 21 pages of Appendices, 13 figures, uses JHEP3.cls. v2: corrections to finite parts of NLO jet functions, minor changes to plots, clarified discussion of power corrections. v3: Journal version. Introductory sections significantly reorganized for clarity, classification of logarithmic accuracy clarified, results for non-Mercedes-Benz configurations adde

    Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks

    Full text link
    It is argued that experimental constraints on theories of asymmetric dark matter (ADM) almost certainly require that the DM be part of a richer hidden sector of interacting states of comparable mass or lighter. A general requisite of models of ADM is that the vast majority of the symmetric component of the DM number density must be removed in order to explain the observed relationship ΩBΩDM\Omega_B\sim\Omega_{DM} via the DM asymmetry. Demanding the efficient annihilation of the symmetric component leads to a tension with experimental limits if the annihilation is directly to Standard Model (SM) degrees of freedom. A comprehensive effective operator analysis of the model independent constraints on ADM from direct detection experiments and LHC monojet searches is presented. Notably, the limits obtained essentially exclude models of ADM with mass 1GeVmDM\lesssim m_{DM} \lesssim 100GeV annihilating to SM quarks via heavy mediator states. This motivates the study of portal interactions between the dark and SM sectors mediated by light states. Resonances and threshold effects involving the new light states are shown to be important for determining the exclusion limits.Comment: 18+6 pages, 18 figures. v2: version accepted for publicatio
    corecore