2,274 research outputs found

    Test-bed development & measurement plan for evaluating transmit diversity in DVB networks

    Get PDF
    This paper presents a test-bed development and measurement plan for evaluating transmit diversity in the DVB network. Transmit diversity reduces the complexity and improves the power consumption of the personal receiving devices by improving the transmission of signals in NLOS cluttered environments. Also, it is more practical than receive diversity due to the difficulty of locating two receive antennas far enough apart in a small mobile device. Test service scenarios were developed to illustrate the benefits of such technologies so that effectiveness can be researched in a variety of service and terrain scenarios using purpose built test systems. The laboratory tests were designed to validate the theoretical measurements from the theoretical analysis and these results will be verified by a field measurement campaign in short and long time spans

    The use of fuzzy real option valuation method to rank Giga Investment Projects on Iran's natural gas reserves

    Get PDF
    Giga investments are exposed to numerous systematic and unsystematic (or specific) risks that significantly influence their feasibility and value. In addition to the conventional issues and complexities in evaluating investment projects, factors such as long construction time, high amount of capital required and irreversibility of investment, increase uncertainty of cash flows in these types of projects. As a consequence, decision makers are usually not satisfied with the results of the most popular valuation methodology – discounted cash flow analysis – in valuation of Giga investments. The most promising methodology of valuing flexibility in such investment projects is the real options valuation which quantifies the value of embedded flexibilities through option pricing techniques.In this paper, fuzzy real options valuation techniques are used to rank Giga project proposals faced in Iran's gas industry. To this end, different scenarios of project payoff and future uncertainties are quantified, using fuzzy numbers based on findings from earlier real option valuation methods.Keywords: Giga Investment, Fuzzy Pay Off, Real options valuation, Natural Gas, Ira

    Laboratory measurement campaign of DVB-T signal with transmit delay diversity

    Get PDF
    The requirements for future DVB-T/H networks demand that broadcasters design and deploy networks that provide ubiquitous reception in challenging indoors and other obstructed situations. It is essential that such networks are designed cost-effectively and with minimized environmental impact. The EC funded project PLUTO has since its start in 2006 explored the use of diversity to improve coverage in these difficult situations. The purpose of this paper is to investigate the performance of Transmit Delay Diversity (DD) with two antennas to improve the reception of DVB-T/H systems operating in different realistic propagation conditions through a series of tests using a SPIRENT SR5500 dual channel emulator. The relationship between correlation coefficient between channels, receiver velocity and diversity gain is nvestigated. It is shown that transmit delay diversity significantly improves the quality of reception particularly in simulated fast fading mobile broadcasting applications. This paper documents research conducted by Brunel University and Broadreach Systems

    Toward Better Stability and Reversibility of the Mn4+^{4+}/Mn2+^{2+}Double Redox Activity in Disordered Rocksalt Oxyfluoride Cathode Materials

    Get PDF
    Cation-disordered rocksalt (DRS) materials have shown good initial reversibility and facile Li+^{+}insertion and extraction in the structure at high rates. However, all of the Li-rich oxyfluorides introduced so far suffer from short cycle lifetimes and severe capacity fading. In the current study, we combine the strategy of using high-valent cations with partial substitution of oxygen anions by fluorine ions to achieve the optimal Mn4+^{4+}/Mn2+^{2+} double redox reaction in the composition system Li2_{2}Mn1x_{1-x}Tix_{x}O2_{2}F (0 ≤ x ≤ 2/3). While Ti-rich compositions correlate to an O-oxidation plateau and a partial Mn3+^{3+}–Mn4+^{4+} redox process at high voltages, owing to the presence of Ti3+ in the structure, a new composition Li2_{2}Mn2/3_{2/3}Ti1/3_{1/3}O2_{2}F with a lower amount of Ti shows better electrochemical performance with an initial high discharge capacity of 227 mAh g1^{-1} (1.5–4.3 V window) and a Coulombic efficiency of 82% after 200 cycles with a capacity of 136 mAh g1^{-1} (>462 Wh kg1^{-1}). The structural characteristics, oxidation states, and charge-transfer mechanism have been examined as a function of composition and state of charge. The results indicate a double redox mechanism of Mn4+^{4+}/Mn2+^{2+} in agreement with Mn–Ti structural charge compensation. The findings point to a way for designing high-capacity DRS materials with multi-electron redox reactions

    Semi-Autonomous Rodent Habitat for Deep Space Exploration

    Get PDF
    NASA has flown animals to space as part of trailblazing missions and to understand the biological responses to spaceflight. Mice traveled in the Lunar Module with the Apollo 17 astronauts and now mice are frequent research subjects in LEO on the ISS. The ISS rodent missions have focused on unravelling biological mechanisms, better understanding risks to astronaut health, and testing candidate countermeasures. A critical barrier for longer-duration animal missions is the need for humans-in-the-loop to perform animal husbandry and perform routine tasks during a mission. Using autonomous or telerobotic systems to alleviate some of these tasks would enable longer-duration missions to be performed at the Deep Space Gateway. Rodent missions performed using the Gateway as a platform could address a number of critical risks identified by the Human Research Program (HRP), as well as Space Biology Program questions identified by NRC Decadal Survey on Biological and Physical Sciences in Space, (2011). HRP risk areas of potentially greatest relevance that the Gateway rodent missions can address include those related to visual impairment (VIIP) and radiation risks to central nervous system, cardiovascular disease, as well as countermeasure testing. Space Biology focus areas addressed by the Gateway rodent missions include mechanisms and combinatorial effects of microgravity and radiation. The objectives of the work proposed here are to 1) develop capability for semi-autonomous rodent research in cis-lunar orbit, 2) conduct key experiments for testing countermeasures against low gravity and space radiation. The hardware and operations system developed will enable experiments at least one month in duration, which potentially could be extended to one year in duration. To gain novel insights into the health risks to crew of deep space travel (i.e., exposure to space radiation), results obtained from Gateway flight rodents can be compared to ground control groups and separate groups of mice exposed to simulated Galactic Cosmic Radiation (at the NASA Space Radiation Lab). Results can then be compared to identical experiments conducted on the ISS. Together results from Gateway, ground-based, and ISS rodent experiments will provide novel insight into the effects of space radiation

    Bulk and Surface Stabilization Process of Metastable Li-Rich Disordered Rocksalt Oxyfluorides as Efficient Cathode Materials

    Get PDF
    Manganese based disordered rocksalt systems have attracted attention as Co-free and high capacity cathode materials for Li-ion batteries. However, for a practical application these materials are considered as metastable and exhibit too limited cyclability. In order to improve the structural stability of the disordered rocksalt Li1+x_{1+x}Mn2/3_{2/3}Ti1/3_{1/3}O2_2Fx_x (0 ≤ x ≤ 1) system during cycling, we have introduced a mild temperature heat treatment process under reducing atmosphere, which is intended to overcome the structural anomalies formed during the mechanochemical synthesis. The heat-treated samples presented better electrochemical properties, which are ascribed to a structural defect mitigation process both at the surface and in the bulk, resulting in improved crystal structure stability. In addition, the optimized particle size and the smaller BET surface area induced by the recrystallization contributes to the observed enhanced performance. Among the studied compositions, the heat treated Li2_2Mn2/3_{2/3}Ti1/3_{1/3}O2_2F sample displayed better electrochemical performance with a discharge capacity of 165 mAh g1^{−1} after 100 cycles at 0.1 C (∼80% of the initial capacity), when combined with further conditioning of the cells. The results point explicitly towards a guided stabilization approach, which could have a beneficial effect regarding the application of DRS oxyfluoride materials for sustainable LIBs

    Zoledronate Prevents Simulated Weightlessness-Induced Bone Loss in the Cancellous Compartment While Blunting the Efficacy of a Mechanical Loading Countermeasure

    Get PDF
    Astronauts using high-force resistance training while weightless show a high-turnover remodeling state within the skeletal system, with resorption and formation biomarkers being elevated. One countermeasure for the skeletal health of astronauts includes an antiresorptive of the bisphosphonate (BP) drug class. We asked, does the combination of an anti-resorptive and high-force exercise during weightlessness have negative effects on bone remodeling and strength? In this study, we developed an integrated model to mimic the mechanical strain of exercise via cyclical loading (CL) in mice treated with the BP Zoledronate (ZOL) combined with hind limb unloading (HU) to simulate weightlessness. We hypothesized that ZOL prevents structural degradation from simulated weightlessness and that CL and ZOL interact to render CL less effective. Thirty-two C57BL/6 mice (male, 16 weeks old, n=8/group) were exposed to 3 weeks of either HU or normal ambulation (NA). Cohorts of mice received one subcutaneous injection of ZOL (45g/kg), or saline vehicle (VEH), prior to the start of HU. The right tibia was axially compressed in vivo 60x/day to 9N (+1200strain on the periosteal surface) and repeated 3x/week during HU. Left tibiae served as a within subject, non-compressed control. Ex vivo CT was performed on all subjects to determine cancellous and cortical architectural parameters. Static and dynamic histomorphometry were carried out for the left and right tibiae to determine osteoclast- and osteoblast relevant surfaces. Further, micro damage was assessed in select groups by basic-fuchsin staining to test whether CL had an effect. For all assays, a multivariate (2x2x2) ANCOVA model was used to account for body weight changes. Additionally, for the tibiae, we incorporated a random effect for the subject (hence, a mixed model) to account for observations of both left and right tibiae within each subject. P < 0.05 was considered significant. In the cancellous compartment of the proximal tibial metaphysis, we observed a main effect from each independent variable, as determined by structural and histomorphometric assays. Specifically, as expected, ZOL showed an increase in the cancellous bone volume to total volume fraction (BV/TV, +32%) and trabecular number (+18%) compared to the VEH. As expected, ZOL decreased osteoclast surface (OC/BS) by -45% compared to VEH. Surprisingly, ZOL reduced mineralizing surface (MS/BS) and bone formation rate (BFR), indicators of osteoblast activity, by -40% and -54%, respectively, compared to VEH. Altogether, ZOL-treated mice displayed a low turnover state of remodeling in the metaphysis. In the context of skeletal aging, we speculate that ZOL prevented age-related cancellous strut loss during the experiment. As a main effect, as expected, HU decreased BV/TV by - 31% via reductions in both trabecular thickness (-11%) and number (-22%) compared to NA controls. Additionally, HU decreased MS/BS by -38% and bone formation rate (BFR) by -50% compared to NA controls. Altogether, these data are consistent with structural degradation resulting from imbalanced remodeling that favors resorption. As a main effect, CL increased BV/TV by +15% via increased trabecular thickness (+12%) compared to the noncompressed limb. As expected, CL increased MS/BS (+20%) and BFR (+24%), indicating osteoblast mineralization contributed to bone gains. These data show that CL provided an anabolic stimulus to the cancellous tissue. We observed unique interactions in ZOL*CL and HU*CL. First, ZOL prevented CL-induced increases in BV/TV and trabecular number, as compared to VEH. In the context of skeletal aging, these data suggest no added benefit from CL in the ZOL-treated mice. Interestingly, no microdamage was observed in mice that were unloaded and treated with ZOL (independent of CL). Secondly, HU prevented CL-induced increases in BFR, as compared to NA controls. These data suggest that either exercise is less effective or the kinetics of formation are slower during simulated weightlessness. Osteoclast surface was unchanged by either treatment. Thus, in contrast to exercising astronauts, these data do not suggest a high-turnover state in the metaphysis. To assess mechanical properties as a function of HU or ZOL, we tested the left femur in three-point bending ex vivo. As expected, HU decreased stiffness (-30%) compared to NA, and ZOL increased stiffness compared to VEH (+28%). Interestingly, HU increased the post-yield displacement, related to collagenous tensile loading, compared to NA (+20%). ZOL increased yield force (+11%) and ultimate force (+17%), which seems to explain the significant effect of ZOL increasing total energy (work-to-fracture, +15%), while not affecting the post yield displacement. Taken together, ZOL did not have detrimental affect on mechanical properties. Our integrated model simulates the combination of weightlessness, exercise-induced mechanical strain, and anti-resorptive treatment that astronauts experience during space missions. We conclude that Zoledronate was an effective countermeasure against weightlessness-induced bone loss, though zoledronate, as well as weightlessness, rendered exercise-related mechanical loading less effective
    corecore