11,050 research outputs found

    Video Dictogloss : A Noticing Task

    Get PDF

    Preserved Motor Asymmetry in Late Adulthood: Is Measuring Chronological Age Enough?

    Get PDF
    When comparing motor performance of the dominant and nondominant hands, older adults tend to be less asymmetric compared to young adults. This has suggested decreased motor lateralization and functional compensation within the aging brain. The current study further addressed this question by testing whether motor asymmetry was reduced in a sample of 44 healthy right-handed adults ages 65-89. We hypothesized that the older the age, the less the motor asymmetry, and that ‘old old’ participants (age 80+) would have less motor asymmetry than ‘young old’ participants (age 65-79). Using two naturalistic tasks that selectively biased the dominant or nondominant hands, we compared asymmetries in performance (measured as a ratio) across chronological age. Results showed preserved motor asymmetry across ages in both tasks, with no difference in asymmetry ratios in the ‘old old’ compared to the ‘young old.’ In the context of previous work, our findings suggest that the aging brain may also be characterized by additional measures besides chronological age

    Conversational Shadowing

    Get PDF

    Melting and freezing of argon in a granular packing of linear mesopore arrays

    Full text link
    Freezing and melting of Ar condensed in a granular packing of template-grown arrays of linear mesopores (SBA-15, mean pore diameter 8 nanometer) has been studied by specific heat measurements C as a function of fractional filling of the pores. While interfacial melting leads to a single melting peak in C, homogeneous and heterogeneous freezing along with a delayering transition for partial fillings of the pores result in a complex freezing mechanism explainable only by a consideration of regular adsorption sites (in the cylindrical mesopores) and irregular adsorption sites (in niches of the rough external surfaces of the grains, and at points of mutual contact of the powder grains). The tensile pressure release upon reaching bulk liquid/vapor coexistence quantitatively accounts for an upward shift of the melting/freeezing temperature observed while overfilling the mesopores.Comment: 4 pages, 4 figures, to appear as a Letter in Physical Review Letter

    Modeling the momentum distributions of annihilating electron-positron pairs in solids

    Get PDF
    Measuring the Doppler broadening of the positron annihilation radiation or the angular correlation between the two annihilation gamma quanta reflects the momentum distribution of electrons seen by positrons in the material.Vacancy-type defects in solids localize positrons and the measured spectra are sensitive to the detailed chemical and geometric environments of the defects. However, the measured information is indirect and when using it in defect identification comparisons with theoretically predicted spectra is indispensable. In this article we present a computational scheme for calculating momentum distributions of electron-positron pairs annihilating in solids. Valence electron states and their interaction with ion cores are described using the all-electron projector augmented-wave method, and atomic orbitals are used to describe the core states. We apply our numerical scheme to selected systems and compare three different enhancement (electron-positron correlation) schemes previously used in the calculation of momentum distributions of annihilating electron-positron pairs within the density-functional theory. We show that the use of a state-dependent enhancement scheme leads to better results than a position-dependent enhancement factor in the case of ratios of Doppler spectra between different systems. Further, we demonstrate the applicability of our scheme for studying vacancy-type defects in metals and semiconductors. Especially we study the effect of forces due to a positron localized at a vacancy-type defect on the ionic relaxations.Comment: Submitted to Physical Review B on September 1 2005. Revised manuscript submitted on November 14 200

    Asking new questions with old data: The Centralized Open-Access Rehabilitation database for Stroke

    Get PDF
    Background: This paper introduces a tool for streamlining data integration in rehabilitation science, the Centralized Open-Access Rehabilitation database for Stroke (SCOAR), which allows researchers to quickly visualize relationships among variables, efficiently share data, generate hypotheses, and enhance clinical trial design. Methods: Bibliographic databases were searched according to inclusion criteria leaving 2,892 titles that were further screened to 514 manuscripts to be screened by full text, leaving 215 randomized controlled trials in the database (489 independent groups representing 12,847 patients). Demographic, methodological, and statistical data were extracted by independent coders and entered into SCOAR. Results: Trial data came from 114 locations in 27 different countries and represented patients with a wide range of ages, 62 yr 41; 85, (shown as median range) and at various stages of recovery following their stroke, 141 d 1; 3372. There was considerable variation in the dose of therapy that patients received, 20 h 0; 221, over interventions of different durations, 28 d 10; 365. There was also a lack of common data elements (CDEs) across trials, but this lack of CDEs was most pronounced for baseline assessments of patient impairment and severity of stroke. Conclusions: Data integration across hundreds of RCTs allows clinicians and researchers to quickly visualize data from the history of the field and lays the foundation for making SCOAR a living database to which researchers can upload new data as trial results are published. SCOAR is a useful tool for clinicians and researchers that will facilitate data visualization, data sharing, the finding of relevant past studies, and the design of clinical trials by enabling more accurate and comprehensive power analyses. Furthermore, these data speak to the need for CDEs specific to stroke rehabilitation in randomized controlled trials.PROSPERO# CRD420140901
    corecore