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ABSTRACT 

When comparing motor performance of the dominant and nondominant hands, older adults tend 

to be less asymmetric compared to young adults. This has suggested decreased motor 

lateralization and functional compensation within the aging brain. The current study further 

addressed this question by testing whether motor asymmetry was reduced in a sample of 44 

healthy right-handed adults ages 65-89. We hypothesized that the older the age, the less the 

motor asymmetry, and that ‘old old’ participants (age 80+) would have less motor asymmetry 

than ‘young old’ participants (age 65-79). Using two naturalistic tasks that selectively biased the 

dominant or nondominant hands, we compared asymmetries in performance (measured as a 

ratio) across chronological age. Results showed preserved motor asymmetry across ages in both 

tasks, with no difference in asymmetry ratios in the ‘old old’ compared to the ‘young old.’ In the 

context of previous work, our findings suggest that the aging brain may also be characterized by 

additional measures besides chronological age. 

 

Key words: motor lateralization; asymmetry; aging; upper extremity; naturalistic task 

Abbreviations: Dominant = D; Nondominant = ND 
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1. Hemispheric specialization is considered a key feature of neural organization (Toga and 

Thompson, 2003). One outcome of such organization is the lateralization of certain behaviors, 

including upper extremity movement. A growing amount of evidence in animals and humans has 

strongly suggested that the control system for upper extremity movement is lateralized across the 

two cerebral hemispheres (Chatagny et al., 2013; Frayer et al., 2010; Meguerditchian et al., 2013; 

Sainburg, 2014; Uomini, 2009; Zhao et al., 2012). More specifically, the dominant hemisphere 

(i.e. the left hemisphere of right handers) appears to be specialized for controlling movements 

through predictive mechanisms that effectively coordinate multiple limb segments, which are 

optimal when movement conditions are consistent and stable (Bagesteiro and Sainburg, 2002; 

Coelho et al., 2013; Sainburg and Kalakanis, 2000). Beyond and in contrast to this, the 

nondominant hemisphere (i.e. the right hemisphere of right handers) may be specialized for 

maintaining limb stability and resisting unexpected perturbations from the environment 

(Bagesteiro and Sainburg, 2003; Mutha et al., 2012). Further research suggests that with this 

nondominant hemispheric advantage, the left hand may also be better at static object 

manipulation compared to the right hand (Ferrand and Jaric, 2006; Judge and Stirling, 2003) 

when limb choice/preference is constrained, perhaps through better limb stability at the end-

effector (hand).  

 In concert with hemispheric differences in motor planning and execution, the 

lateralization of other sensorimotor functions may also contribute to manual asymmetries (for 

review see Goble and Brown, 2008; Starkes et al., 2002). For example, the left and right 

hemispheres appear to utilize (Flowers 1975; Roy and Elliott, 1986; Todor and Doane, 1978), 

process and weight (Adamo and Martin, 2009; Martin and Adamo, 2011) movement-related 

visual and somatosensory feedback differently, and may even allocate spatial attention 
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differently (Hodges et al., 2007). Although these sensorimotor asymmetries are strongest in 

right-handed individuals, the respective roles of the dominant and nondominant hemispheres 

during voluntary upper extremity movement are relatively maintained in left-handed adults as 

well (Goble et al., 2009; Legon et al., 2010; Przybyla et al., 2012; Wang and Sainburg, 2006). 

Thus, depending on a given task and its requirements, the dominant and nondominant hands may 

perform differently, with one hand being better at the task than the other.  

Dominant and nondominant hand performance may, however, become more symmetric 

with age. Numerous behavioral studies have documented age-related reductions in motor 

asymmetry when moving unimanually (Przybyla et al. 2011; Raw et al. 2012), transferring 

learned information between the limbs (Wang et al., 2011), and even imagining movements 

(Paizis et al., 2014), such that the intermanual difference is smaller than in young adults. One 

explanation is that reductions in age-related asymmetries may reflect functional compensation in 

older adults through increased ipsilateral hemispheric activation. This hypothesis has emerged 

from research in other lateralized non-motor systems, such as working memory encoding and 

retrieval (Cabeza, 2002; Cabeza et al., 2002; Dolcos et al., 2002; Reuter-Lorenz et al., 1999), yet 

may not hold as true for voluntary motor control given the often co-morbid aspects of aging like 

muscle and bone loss, cardiopulmonary dysfunction, and response slowing (Spirduso et al., 

2005). Nevertheless, models of compensatory cortical recruitment may be applicable when 

considering less asymmetry in motor performance for older adults.  

The age ‘effect’ on motor asymmetry has typically been modeled dichotomously, 

however, where the difference between dominant and nondominant hand performance is 

compared between young and older adults. To more clearly understand whether reductions in 

motor asymmetry are in fact age-related, however, one could also investigate this question by 
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modeling age as a continuous variable and within later adulthood. Thus, the purpose of this study 

was to test whether motor asymmetry was further reduced with advanced chronological age. 

Using two different motor tasks that theoretically biased either the dominant or nondominant 

hands for coordination or manipulation respectively, we hypothesized that the older the age, the 

less the motor asymmetry in a sample of healthy adults ages 65 and over. We also hypothesized 

the ‘old old’ (age 80+) would have less motor asymmetry than the ‘young old’ (age 65-79).  

 

2. EXPERIMENTAL PROCEDURES 

2.1.  Participants 

Forty-four right-handed adults age 65 years or older (mean ± SD: 75.4 ± 6.6 years) from 

the local community (n=43) or senior assisted-living apartments (n=1) participated in this study. 

Recruitment was based on individuals who contacted the laboratory with interest in participating 

as a result of approved postings throughout Cache County. Exclusion criteria included 1) one or 

more self-reported neurological conditions (e.g., Parkinson’s disease, Huntington’s disease, 

Alzheimer’s disease, stroke, or transient ischemic attack); 2) acute or chronic musculoskeletal 

conditions that could affect motor function; and 3) left- or mixed-handedness (see below). All 

aspects of this study were conducted in accordance with the Declaration of Helsinki, and all 

procedures were carried out with the adequate understanding and prior written consent of the 

participants as approved by the University’s Institutional Review Board.  

 Participants’ cognitive and sensorimotor functions were characterized prior to completing 

the motor task. Global cognitive status was measured with the Montreal Cognitive Assessment 

(MoCA) (Nasreddine et al., 2005), which is a reliable, easily administered, and brief cognitive 

screening test (max score = 30; “normal” score cutoff ≥ 26). General disability was tested for 
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with the Index of Independence in Activities of Daily Living (Katz et al., 1970) in order to assess 

functional ability in daily life. This index is a paper-and-pencil test in which participants self-

report their level of assistance needed to complete each of the six activities of daily living 

functions: feeding, continence, transferring, going to toilet, dressing, and bathing. Reports of “no 

assistance needed” were scored as 1; the maximum (worst) score was 18, which indicated 

“dependent in all six functions.” No additional measure of physical fitness or activity was 

collected. Tactile sensation was measured with Semmes Weinstein monofilaments (Touch-

Test™, North Coast Medical, Inc., Gilroy, CA) at the distal end of the dominant and 

nondominant index fingers. Maximal grip strength of the dominant and nondominant hand was 

tested via hand dynamometry (Jamar, Sammons-Preston-Rolyan, Bolingbrook, IL) and measured 

as the average of three consecutive measurements for each hand (Schmidt and Toews, 1970). 

Hand dominance was determined using a modified Edinburgh Handedness Questionnaire 

(Oldfield, 1971). Only participants with a laterality quotient of ≥80% (“strongly right-handed”) 

were included in this study, but no further data regarding their occupation or potential for long-

term hand training over their lifespan was collected. All participant characteristics are 

summarized in Table 1. 

  

2.2.  Experimental tasks 

The two motor tasks used in this study were a simulated dressing task and a simulated 

feeding task. Additional justification and images of these naturalistic tasks have been published 

previously (Schaefer and Lang, 2012; Schaefer et al., 2013; Schaefer et al., 2014). We 

operationally defined ‘naturalistic’ in this study as requiring purposeful, multi-step actions 
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(Giovannetti et al., 2002; Hartmann et al., 2005; Schwartz et al., 1998) rather than involving only 

one movement component (e.g. only reaching).  

The simulated dressing task in this study required participants to manipulate buttons and 

fasten them sequentially with one hand on a button board (Backman et al., 1992) (Fig. 1A). At 

the start of each trial, participants began buttoning the top of ten buttons (2.5 cm diameter) that 

were sewn 5.3 cm apart vertically to a piece of heavyweight linen fabric, 3.0 cm from the edge. 

The buttonholes were 3.7 cm in length. Both pieces of the fabric were double-layered (2-ply) and 

were secured to a wooden board (61 cm x 34 cm), with the placket centered at the participants’ 

midline, 15 cm in front of them. The button-side of the fabric was folded onto the board, while 

the button hole-side of the fabric was unfolded lateral to midline onto the table prior to each trial. 

Fabric weight (65.6 g/m
2
) and thread count (15 per cm) were measured according to ASTM Test 

Methods D3776-96 and D3775-98, respectively (ASTM, 2001a, b). Buttons were fastened 

through horizontal button holes in a lateral-over-medial order, relative to the participant. 

Participants were instructed to fasten the 10 buttons consecutively (from top to bottom) as 

quickly as possible with either their left (nondominant) or right (dominant) hand, equaling one 

trial. The experimenter monitored the ongoing trials to ensure that each button was completely 

through the button hole; if a button was not completely through before the participant moved on 

to the next button, the participant was informed to return to the incomplete repetition and do so 

as time continued to elapse. Thus, the measure of performance was the time taken to complete 

the 10 buttons (i.e. “trial time”), with faster times indicating better performance. Given this 

task’s requirement of manipulating a static object (Ebersbach et al., 1995; Soliveri et al., 1992), 

we expected that the nondominant hand would have faster trial times than the dominant hand.  
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 The simulated feeding task requires repetitive multijoint coordination and has been 

adapted from the simulated feeding subtest of a clinical assessment (Jebsen et al., 1969) that 

objectively assesses hand function for activities of daily living. This task required participants to 

spoon beans (kidney, raw) at a time from a center proximal “start” cup to three distal “target” 

cups as fast as possible (Fig. 1B). The cups (9.5cm in diameter) were secured to a board (60.5cm 

x 40.0cm), with three target cups secured radially at 45°, 90°, and 135° around the start cup at a 

distance of 16 cm. The start cup was oriented along the participant’s midline and 15cm in front 

of the seated participant. One repetition of the motor task consisted of spooning two beans at 

once from the start cup to a target cup with the nondominant hand (Cherry et al., 2014; Schaefer 

and Lang, 2012; Schaefer et al., 2014), with one trial equaling 15 repetitions. During each trial, 

participants were instructed to move as quickly yet as accurately as possible, first to the left 

target cup, next to the center target cup, and then to the right cup. They repeated this sequence 

five times to complete the trial. Any unsuccessful attempts (e.g. only one bean was placed into a 

target cup per repetition) were not counted as time continued to elapse. Each trial began when 

the participants picked up the spoon (plastic, 5.21 g) and ended when they returned the spoon to 

its start location (5 cm lateral to the start cup). The measure of performance was the time taken to 

complete 15 successful repetitions (i.e. “trial time”), with faster times indicating better 

performance. Given this task’s requirement for multijoint coordination and limb reversal 

(Sainburg et al., 1995), we expected that the dominant hand would have faster trial times than the 

nondominant hand. 

In both tasks, all trials were timed to the nearest 100
th

 of a second via stopwatch. In 

contrast to some experimental or therapeutic approaches (Winstein, 1991), participants were 

given no explicit feedback (i.e. knowledge of performance or results) after each trial, and were 
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not encouraged to adopt any specified pattern of upper extremity kinematics during training. 

Instead, participants used self-selected movement strategies to complete each task. During data 

collection, all participants completed individual trials of each task with their dominant and 

nondominant hands. We did not assume that the dressing task required only manipulation and no 

coordination, nor that the feeding task required only coordination and not manipulation; instead, 

we posited that the tasks had either more manipulation or coordination requirements relative to 

each other in order to minimize trial time. Although participants were instructed to move 

quickly, trial time in both tasks reflected not only the speed of performance but also some level 

of accuracy as well. For example, if the participant missed a button or did not fully fasten it 

through the button hole, time continued to elapse as he or she returned to the incomplete 

repetition to do so. Time also continued to elapse if participants dropped beans during transport, 

missed a target, or had any difficulty loading two beans onto the spoon from the home cup (i.e. 

rooting around). Because these data were collected in a baseline session for a larger training 

study (Schaefer et al., 2014) that involved testing the nondominant hand then the dominant hand, 

only task order (dressing vs. feeding) was randomized in this study. Our data (see Section 3.1.) 

did not, however, suggest any intermanual transfer learning effects per se.  

 

2.3.  Data and statistical analyses 

To quantify the degree of motor asymmetry, we computed an asymmetry ratio for each 

participant for each task by dividing dominant hand performance (trial time) by nondominant 

hand performance (D/ND). Thus, an asymmetry ratio of 1 would indicate equivalent 

performance for the dominant and nondominant hands, whereas values >1 would indicate that 

the nondominant hand was faster (i.e. better) than the dominant hand when completing the tasks. 
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Likewise, ratio values <1 would indicate that the dominant hand was faster (i.e. better) than the 

nondominant hand.  

JMP 10.0 (SAS Institute Inc., Cary, NC) was used for all statistical analyses (α=.05). A 

2x2 repeated measures analysis of variance (ANOVA) first compared dominant and 

nondominant hand performance (D vs. ND) between tasks (dressing vs. feeding), both as within-

subject factors, to test whether the selected tasks did in fact a) yield manual asymmetries in our 

sample and b) correctly bias either the dominant hand for coordination (i.e. simulated feeding) or 

the nondominant hand for manipulation (i.e. simulated dressing) as predicted. Posthoc analyses 

were conducted when warranted using the Tukey-Kramer Honestly Significant Difference (HSD) 

test. The remaining analyses described below were conducted within each task; no further 

between-task comparisons were made since we had no a priori hypotheses about which task 

would yield more motor asymmetry or more age-related declines in asymmetry.  

To test our first hypothesis that the older the age, the less the motor asymmetry, we 

determined the linear relationship between asymmetry ratio and age using least squares 

regression. To test our second hypothesis that the ‘old old’ would have less motor asymmetry 

than the ‘young old’, we first assigned participants to either category based on their age (80 years 

or older, n=16 vs. 65-79 years, n=27) (Forman et al., 1992). We then compared asymmetry ratios 

between age groups using an independent T-test. In comparing asymmetry ratios between age 

categories, assumptions of equal variances and normality were tested with Brown-Forsythe and 

Shapiro-Wilk tests, respectively. In cases of non-normality, Mann-Whitney tests were used 

rather than T-tests. 

 

3. RESULTS 
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3.1.  Different tasks yielded different hand advantages 

 Figure 2 shows how each task selectively biased either the dominant or nondominant 

hand, as expected. Our ANOVA revealed a significant interaction effect between hand (D vs. 

ND) and task (dressing vs. feeding) on trial time (F1,43=41.3, p<.0001). Posthoc analyses 

determined that the nondominant hand was faster (i.e. better) than the dominant hand on the 

dressing task (p<.05), whereas the dominant hand was faster (i.e. better) than the nondominant 

hand on the feeding task (p<.0001). Thus, these tasks not only yielded manual asymmetries in 

our sample, but also showed predictable manual advantages that were likely based on differing 

task requirements (manipulation vs. coordination).  

 

3.2.  Relationship between motor asymmetry and advancing age?  

As described in 2.3, we computed an asymmetry ratio that expressed dominant hand 

performance relative to nondominant hand performance (D/ND). If less motor asymmetry was 

associated with older age in our sample, we would expect to see these values converge to 1 as 

participant age increased, which would indicate more symmetry between the hands on a given 

task. Results shown in Figure 3 do not, however, support this hypothesis. Least squares 

regression revealed no significant linear relationship between asymmetry ratio and age for either 

the dressing task (p=.75) or the feeding task (p=.75) (Fig. 4). In the both tasks, less than 1% of 

the variance in asymmetry ratio was explained by participants’ age (r
2
 = .0024 in both cases).  

We further compared asymmetry ratios between age groups (‘young old’, n=28 vs. ‘old 

old’, n=16) for each task. Although ratios were >1 for the dressing task and <1 for the feeding 

task (see Fig. 3), there was no significant difference between asymmetry ratios in the ‘young old’ 

and ‘old old’ groups for the dressing task (Mann–Whitney U=.79; p=.42 two-tailed) or the 
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feeding task (independent T-test; p=.96) (Fig. 4). Variances were considered equal between age 

groups for both tasks (all Brown-Forsythe statistics: p>.19). Although we did not control for 

cognitive impairment in this convenience sample of participants, two-tailed Fisher’s exact tests 

further indicated no significant difference in proportions of gender (male vs. female; p=.32) or 

mild cognitive impairment (MoCA score <26 vs. ≥26; p=.13) between the ‘young old’ vs. ‘old 

old’ age groups. With comparable samples of males vs. females and those with vs. without mild 

cognitive impairment (based on MoCA score only) in both age groups, we also tested whether 

our asymmetry ratios were related to gender or cognitive status. Independent T-tests indicated 

that asymmetry ratios were not significantly different based on gender (dressing; p=.09 and 

feeding; p=.57) nor on cognitive status (dressing; p=.21 and feeding; p=.67).  

 

3.3. Relationship between overall motor performance and advancing age 

Although our data did not show a significant effect of age on motor asymmetry, we did in 

fact observe an effect of age and age-related factors on overall motor performance. Trial times 

for both the dominant and nondominant hands were 1) positively correlated with age (r
2
 values 

from .18 to .30; all p<.01) and 2) negatively correlated with MoCA score (r
2
 values from .10 to 

.15; all p<.05) in both tasks, in spite of no correlation between these factors and motor 

asymmetry itself. In other words, the older the participants or the lower the MoCA scores were, 

the longer the trial times were, regardless of whether they were using their dominant or 

nondominant hand. The difference in trial times between the hands, however, was not dependent 

on the participants’ ages (see Figs. 3 and 4). Thus, this measure of motor asymmetry may reflect 

something distinct from general performance and/or factors related chronological age.  
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4. DISCUSSION 

The purpose of this study was to test whether motor asymmetry was further reduced with 

age in late adulthood. Using two different functional motor tasks, we hypothesized that the older 

the chronological age, the less the motor asymmetry would be in a convenience sample of 

healthy right-handed adults age 65 and older. We found that 1) the difference between dominant 

and nondominant hand performance on either motor task did not decrease with advancing age, 

and 2) the ‘old old’ participants in our sample (ages 80-89) did not have less asymmetry in either 

task compared to the ‘young old’ (ages 65-79). These findings add further insight into motor 

lateralization and how to better quantify aging within the central nervous system, as discussed 

below. 

 First, compelling evidence from patients with lateralized cortical lesions in sensorimotor 

regions due to stroke (Freitas et al., 2011; Haaland et al., 1987; Haaland and Harrington, 1994, 

1996; Harrington and Haaland, 1991, 1992; Schaefer et al., 2007, 2009a, b; Schaefer et al., 2012; 

Stewart et al., 2014; Tretriluxana et al., 2009; Winstein and Pohl, 1995) has demonstrated the 

specialized roles of the left and right hemispheres for upper extremity movement. These studies 

predict that different motor tasks would yield different manual advantages when performed with 

only one hand, yet the tasks’ requirements would determine which hand would be better. While 

these predictions have been substantiated by data from young healthy adults (see Section 1. 

Introduction), the current study now provides further evidence for the persistence of manual 

advantages in older adults as predicted by some models of lateralization (Sainburg, 2014). 

Furthermore, because this extensive work in younger populations has been able to map specific 

motor control mechanisms onto the left and right hemispheres, we were now able to test our 

tasks’ proof-of-concept in older adults by demonstrating a double dissociation of hand and task. 
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Thus, our two naturalistic motor tasks did in fact bias different aspects of movement control. We 

acknowledge that the preservation of motor asymmetry across ages in our sample may be task-

specific (Teixeira, 2008), but the relative advantages of the nondominant and dominant hands for 

the dressing and feeding tasks (respectively) suggest that the dressing and feeding tasks favor 

separate control mechanisms remain lateralized in older adults.  

 Second, although we did not observe any differences in performance asymmetry across 

ages, there may have been differences in hemispheric activation patterns across ages. 

Neuroimaging data from within and outside of sensorimotor networks have demonstrated an 

increase in ipsilateral hemispheric activity with increasing age (Dolcos et al., 2002; Naccarato et 

al., 2006; Talelli et al., 2008; Ward, 2006). The primary interpretation of these previous findings 

is that the two hemispheres cooperate during the performance of a given cognitive or motor task, 

particularly when it is more complex or difficult (Banich and Belger, 1990; Weissman and 

Banich, 2000), in order to compensate for age-related neural decline. Dolcos et al. (2002) note 

that a ‘difficult’ task for older adults may not be difficult for young adults; thus, bihemispheric 

processing may be necessary for older adults to maintain task performance whereas unilateral 

processing may be sufficient for young adults (Reuter-Lorenz et al., 1999). Thus, in this study, it 

is plausible that the simulated dressing and/or simulated feeding tasks were more challenging or 

complex for the ‘old old’ participants compared to the ‘young old’, and they may have recruited 

additional ipsilateral neural resources to compensate. We did in fact observe an aging effect in 

overall motor performance (but not asymmetry), such that trial time itself was correlated with 

chronological age and cognitive status for both the dominant and nondominant hands in both 

tasks, consistent with other data from this sample (Schaefer et al., 2014). This also adds to 

previous findings by showing that cognitive status in older adults can affect movement speed 
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during functional upper extremity movements in addition to lower extremity movements (e.g. 

Aggarwal et al., 2006; Wilson et al., 2003), further strengthening the notion that poorer 

sensorimotor performance may coexist with or uncover mild cognitive impairment (Reppermund 

et al., 2013). Given the relationship between task difficulty and movement time (Fitts, 1954), we 

could perhaps infer from their trial times that these tasks were more difficult for the older 

participants or those with cognitive impairments in our sample (see Michimata et al., 2008), but 

we cannot at this time determine the symmetry of either group’s hemispheric activation patterns 

(or changes in such) when performing either motor task based on trial time alone. Future work in 

functional neuroimaging is necessary to determine if the lack of age-related reductions in 

performance asymmetry reflect adequate neural compensation by the ipsilateral hemisphere, or 

some other preserved organization of motor control with aging. Nevertheless, our results at this 

time are inconsistent with some previous work (see Section 1. Introduction) yet actually support 

other reports of preserved motor asymmetry in older adults (Chua et al., 1995; Francis and 

Spirduso, 2000; Michimata et al., 2008; Poston et al., 2008). This may be related to how simple 

vs. complex the tasks are for assaying motor asymmetry, whether by experimental design (e.g. 

Francis and Spirduso, 2000) or because of lack of novelty (e.g. Poston et al., 2008).     

Third, participants’ ages were defined in this study according to their chronological age. 

This may further explain the equivocality in whether aging affects motor asymmetry, above and 

beyond any aspects of the tasks themselves. Although chronological age is commonly used in 

research to quantify one’s age, it is not the only way to express age experimentally. Given that 

aging is a multi-factorial process (Spirduso et al., 2005), other metrics of age that could be used 

in research include psychological age (e.g. Jeste et al., 2013), biological age (e.g. DeCarlo et al., 

2014), and ‘functional age’ (e.g. Fried et al., 2001). These ages tend to co-vary with 
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chronological age, but only to a certain extent. For example, one specific biomarker of functional 

age is grip strength, which, when normalized for age, gender, and body mass index (BMI), can 

be a proxy for one’s level of frailty (Ahmed et al., 2007; Cigolle et al., 2009). Thus, when 

comparing two gender- and BMI-matched individuals who have the same chronological age (e.g. 

75 years old) but different grip strength, the individual with the lower grip strength would be 

considered functionally ‘older’ based on evidence of frailty. Because only nine of the 44 

participants in this study had grip strengths below their age- and gender-matched norms (based 

on Bohannon et al., 2006), our sample likely spanned a wide chronological age range but a 

narrow ‘functional’ age range. This interpretation is further supported by the low median score 

on the Index of Independence in ADL assessment, which indicated that this sample was free of 

disability (Katz et al., 1970) and highly independent in their activities of daily living. Thus, 

participants in this study may have been of similar age functionally, despite being different ages 

chronologically.  

This similar ‘functional age’ may have masked some changes in motor asymmetry that 

have been documented in other previous comparisons between young vs. older adults who, in 

those cases, are obviously different both in terms of chronological and functional ages. We 

nevertheless acknowledge our limitation of not directly determining differences in asymmetry 

ratios between young vs. older adults in this study, but note that one advantage of this study is 

the convenience sample of older right-handed adults that captured a wide range of chronological 

age. This wide age range appeared, however, to hold alternative proxies of age (e.g. ADL 

independence or frailty) relatively constant in spite of smaller samples in the upper range of the 

‘old old’ group. With this in mind, motor asymmetry may still be reduced with advancing age (as 

supported by previous studies), but this decline may be more related to advancing ‘functional 
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age’ rather than chronological age. Future studies in older adults could test this hypothesis by 

measuring asymmetries (motor or otherwise) in participants with the same chronological age but 

varying degrees of ADL dependence or frailty, and plotting asymmetry as a function of these 

variables rather than chronological age itself. This future approach would in fact be in line with 

the call by others (see Talelli et al., 2008) for identifying other biomarkers and 

neurophysiological measures that better characterize neural decline with advancing age (Franke 

and Gaser, 2012).  

 

5. CONCLUSION 

This study provides dominant and nondominant upper extremity motor performance data 

on two naturalistic tasks in a convenience sample of healthy older right-handed adults up to 89 

years of age. The two tasks used in this study appeared to bias different control mechanisms, 

resulting in different performance advantages for the two hands, but did not show any reduced 

asymmetries with advancing chronological age. Knowing the ‘normal’ asymmetries associated 

with these tasks in older adults now allows us to more clearly understand and interpret other 

abnormal asymmetries that may be present in Alzheimer’s Disease (Derflinger et al., 2011; 

Postiglione et al., 1993), Parkinson’s Disease (Karadi et al., 2015; Riederer and Sian-Hulsmann, 

2012), and other age-related neurological disorders. Other measures besides purely chronological 

age, however, may provide a clearer picture of the aging brain and functional lateralization.  
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TABLES 

Table 1. Group characteristics. 
 

Age (yrs) 

median 

(range) 

Sex MoCA
a
 

median 

(range) 

ADLs
b
 

median 

(range) 

Tactile sensation
c 

Maximal grip strength (kg)
d 

mean (SD) 

75  

(65-89) 

15 M 

29 F 

25  

(17-30) 

6  

(6-10) 

 D       ND   D            ND 

 2.83 

 3.61 

 4.31 

 6.61 

n=18   n=25 

n=22   n=15 

n=4     n=3 

n=0     n=1 

 

M 

 

F  

 

 

33.8 (7.1)  34.3 (6.5) 

 

20.2 (5.7)  22.1 (5.7) 

 

 

All participants were right-handed. D = dominant (right) hand; ND = nondominant (left) hand. M = male; F = 

female. 
a
Maximum MoCA score = 30. Scores above 26 are considered normal.  

b
 Total score as computed from Index of Activities of Daily Living (ADLs). Minimum (best) score reported as 6 = 

“independent in feeding, continence, transferring, going to toilet, dressing, and bathing”; maximum (worst) score is 

18 = “Dependent in all six functions.” 
c
Sensation of the index fingertip, palmar surface, expressed as lowest (finest) detectable Semmes-Weinstein 

monofilament thickness. 2.83, 3.61, 4.31, and 6.61 are manufacturer-assigned numbers, with higher values 

indicating stiffer monofilaments, according to formula: nominal value = log10[bending force (in milligrams) x l0]. 

n=number of participants. 
d
Measured via dynamometer; average of three consecutive measurements, in randomized order.  
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FIGURE CAPTIONS 

Figure 1. Top views of the simulated A) dressing and B) feeding tasks. Note: Setup shown is for 

testing the left hand. Items are not necessarily drawn to scale. 

 

Figure 2. Comparison of dominant and nondominant hand performance. Mean ± SE trial times 

for the dominant (D) and nondominant (ND) hands on the dressing and feeding tasks 

(***p<.0001; *p<.05). Lower trial times indicate better performance. 

 

Figure 3. Relationship between asymmetry ratio and age. Asymmetry ratio is plotted as a 

function of participant age for both the dressing () and feeding (�) tasks. Ratio values >1 

indicate that the participant’s nondominant hand was faster on that task; <1 indicates that the 

dominant hand was faster. Values closer to 1 indicate more symmetry. Best-fit lines are shown 

for the dressing (dashed) and feeding (solid) tasks, as determined by least squares regression.  

 

Figure 4. Effect of age group on asymmetry ratio. Mean ± SE asymmetry ratios for the ‘young 

old’ (ages 65-79) and ‘old old’ (ages 80+) on the dressing and feeding tasks (n.s. = not 

significant). Values closer to 1 (dotted line) indicate more symmetry. 
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