35,969 research outputs found

    Novel characterization method of impedance cardiography signals using time-frequency distributions

    Get PDF
    The purpose of this document is to describe a methodology to select the most adequate time-frequency distribution (TFD) kernel for the characterization of impedance cardiography signals (ICG). The predominant ICG beat was extracted from a patient and was synthetized using time-frequency variant Fourier approximations. These synthetized signals were used to optimize several TFD kernels according to a performance maximization. The optimized kernels were tested for noise resistance on a clinical database. The resulting optimized TFD kernels are presented with their performance calculated using newly proposed methods. The procedure explained in this work showcases a new method to select an appropriate kernel for ICG signals and compares the performance of different time-frequency kernels found in the literature for the case of ICG signals. We conclude that, for ICG signals, the performance (P) of the spectrogram with either Hanning or Hamming windows (P¿=¿0.780) and the extended modified beta distribution (P¿=¿0.765) provided similar results, higher than the rest of analyzed kernels.Peer ReviewedPostprint (published version

    High-Pressure Induced Structural Phase Transition in CaCrO4: Evidence from Raman Scattering Studies

    Full text link
    Raman spectroscopic studies have been carried out on CaCrO4 under pressure up to 26GPa at ambient temperature. The Raman spectra showed CaCrO4 experienced a continuous structural phase transition started at near 6GPa, and finished at about 10GPa. It is found that the high-pressure phase could be quenched to ambient conditions. Pressure dependence of the Raman peaks suggested there existed four pressure regions related to different structural characters. We discussed these characters and inferred that the nonreversible structural transition in CaCrO4, most likely was from a zircon-type (I41/amd) ambient phase to a scheelite-type high pressure structure (I41/a).Comment: submitte

    Resonant vibrations, peak broadening and noise in single molecule contacts: beyond the resonant tunnelling picture

    Full text link
    We carry out experiments on single-molecule junctions at low temperatures, using the mechanically controlled break junction technique. Analyzing the results received with more than ten different molecules the nature of the first peak in the differential conductance spectra is elucidated. We observe an electronic transition with a vibronic fine structure, which is most frequently smeared out and forms a broad peak. In the usual parameter range we find strong indications that additionally fluctuations become active even at low temperatures. We conclude that the electrical field feeds instabilities, which are triggered by the onset of current. This is underscored by noise measurements that show strong anomalies at the onset of charge transport

    Poly(2-cyclopropyl-2-oxazoline): from rate acceleration by Cyclopropyl to Thermoresponsive properties

    Get PDF
    The synthesis and microwave-assisted living cationic ring-opening polymerization of 2-cyclopropyl-2-oxazoline is reported revealing the fastest polymerization for an aliphatic substituted 2-oxazoline to date, which is ascribed to the electron withdrawing effect of the cyclopropyl group. The poly(2-cyclopropyl-2-oxazoline) (pCPropOx) represents an alternative thermo-responsive poly(2-oxazoline) with a reversible critical temperature close to body temperature. The cloud point (CP) of the obtained pCPropOx in aqueous solution was evaluated in detail by turbidimetry, dynamic light scattering (DLS) and viscosity measurements. pCPropOx is amorphous with a significantly higher glass transition temperature (T(g) similar to 80 degrees C) compared to the amorphous poly(2-n-propyl-2-oxazoline) (pnPropOx) (T(g) similar to 40 degrees C), while poly(2-isopropyl-2-oxazoline) piPropOx is semicrystalline. In addition, a pCPropOx comb polymer was prepared by methacrylic acid end-capping of the living cationic species followed by RAFT polymerization of the macromonomer. The polymer architecture does not influence the concentration dependence of the CP, however, both the CP and T(g) of the comb polymer are lower due to the increased number of hydrophobic end groups

    Magnetic and structural quantum phase transitions in CeCu6-xAux are independent

    Full text link
    The heavy-fermion compound CeCu6−x_{6-x}Aux_x has become a model system for unconventional magnetic quantum criticality. For small Au concentrations 0≤x<0.160 \leq x < 0.16, the compound undergoes a structural transition from orthorhombic to monoclinic crystal symmetry at a temperature TsT_{s} with Ts→0T_{s} \rightarrow 0 for x≈0.15x \approx 0.15. Antiferromagnetic order sets in close to x≈0.1x \approx 0.1. To shed light on the interplay between quantum critical magnetic and structural fluctuations we performed neutron-scattering and thermodynamic measurements on samples with 0≤x≤0.30 \leq x\leq 0.3. The resulting phase diagram shows that the antiferromagnetic and monoclinic phase coexist in a tiny Au concentration range between x≈0.1x\approx 0.1 and 0.150.15. The application of hydrostatic and chemical pressure allows to clearly separate the transitions from each other and to explore a possible effect of the structural transition on the magnetic quantum critical behavior. Our measurements demonstrate that at low temperatures the unconventional quantum criticality exclusively arises from magnetic fluctuations and is not affected by the monoclinic distortion.Comment: 5 pages, 3 figure

    Upper limits on stray force noise for LISA

    Full text link
    We have developed a torsion pendulum facility for LISA gravitational reference sensor ground testing that allows us to put significant upper limits on residual stray forces exerted by LISA-like position sensors on a representative test mass and to characterize specific sources of disturbances for LISA. We present here the details of the facility, the experimental procedures used to maximize its sensitivity, and the techniques used to characterize the pendulum itself that allowed us to reach a torque sensitivity below 20 fNm /sqrt{Hz} from 0.3 to 10 mHz. We also discuss the implications of the obtained results for LISA.Comment: To be published in Classical and Quantum Gravity, special issue on Amaldi5 2003 conference proceedings (10 pages, 6 figures

    Investigation of acoustic noise reduction method for MRI-LINAC hybrid system

    Get PDF
    • …
    corecore