111 research outputs found

    Quasiparticle excitation in and around the vortex core of underdoped YBa_2Cu_4O_8 studied by site-selective NMR

    Full text link
    We report a site-selective ^{17}O spin-lattice relaxation rate T_1^{-1} in the vortex state of underdoped YBa_2Cu_4O_8. We found that T_1^{-1} at the planar sites exhibits an unusual nonmonotonic NMR frequency dependence. In the region well outside the vortex core, T_1^{-1} cannot be simply explained by the density of states of the Doppler-shifted quasiparticles in the d-wave superconductor. Based on T_1^{-1} in the vortex core region, we establish strong evidence that the local density of states within the vortex core is strongly reduced.Comment: 5 pages, 3 figure

    Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines

    Get PDF
    BACKGROUND: Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-γ-tocopherol isoform is found primarily in the US diet, while RRR-α-tocopherol is highest in the plasma. METHODS: The effectiveness of RRR-α- and RRR-γ-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29) and primary colon cells (CCD-112CoN, nontransformed normal phenotype) was studied. Colon cells were treated with and without RRR-α- or RRR-γ-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. RESULTS: Treatment with RRR-γ-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-α-tocopherol did not. Further, RRR-γ-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-γ-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-γ-tocopherol to induce cell death. CONCLUSION: This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR-γ-tocopherol without damage to normal colon cells. The amount growth reduction was dependent upon the molecular signatures of the cell lines. Since RRR-γ-tocopherol is effective at inhibition of cell proliferation at both physiological and pharmacological concentrations dietary RRR-γ-tocopherol may be chemopreventive, while pharmacological concentrations of RRR-γ-tocopherol may aid chemotherapy without toxic effects to normal cells demonstrated by most chemotherapeutic agents

    Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy

    Get PDF
    Heritable changes in gene expression that are not based upon alterations in the DNA sequence are defined as epigenetics. The most common mechanisms of epigenetic regulation are the methylation of CpG islands within the DNA and the modification of amino acids in the N-terminal histone tails. In the last years, it became evident that the onset of cancer and its progression may not occur only due to genetic mutations but also because of changes in the patterns of epigenetic modifications. In contrast to genetic mutations, which are almost impossible to reverse, epigenetic changes are potentially reversible. This implies that they are amenable to pharmacological interventions. Therefore, a lot of work in recent years has focussed on the development of small molecule enzyme inhibitors like DNA-methyltransferase inhibitors or inhibitors of histone-modifying enzymes. These may reverse misregulated epigenetic states and be implemented in the treatment of cancer or other diseases, e.g., neurological disorders. Today, several epigenetic drugs are already approved by the FDA and the EMEA for cancer treatment and around ten histone deacetylase (HDAC) inhibitors are in clinical development. This review will give an update on recent clinical trials of the HDAC inhibitors used systemically that were reported in 2009 and 2010 and will present an overview of different biomarkers to monitor the biological effects

    Cytokine regulation of apoptosis-induced apoptosis and apoptosis-induced cell proliferation in vascular smooth muscle cells

    Get PDF
    Abstract: Vascular smooth muscle cells (VSMCs) are the main structural cell of blood vessels, and VSMC apoptosis occurs in vascular disease, after injury, and in vessel remodeling during development. Although VSMC apoptosis is viewed as silent, recent studies show that apoptotic cells can promote apoptosis-induced compensatory proliferation (AICP), apoptosis-induced apoptosis (AIA), and migration of both local somatic and infiltrating inflammatory cells. However, the effects of VSMC apoptosis on adjacent VSMCs, and their underlying signaling and mechanisms are unknown. We examined the consequences of VSMC apoptosis after activating extrinsic and intrinsic death pathways. VSMCs undergoing apoptosis through Fas/CD95 or the protein kinase inhibitor staurosporine transcriptionally activated interleukin 6 (IL-6) and granulocyte-macrophage colony stimulating factor (GM-CSF), leading to their secretion. Apoptosis induced activation of p38MAPK, JNK, and Akt, but neither p38 and JNK activation nor IL-6 or GM-CSF induction required caspase cleavage. IL-6 induction depended upon p38 activity, while Fas-induced GM-CSF expression required p38 and JNK. Conditioned media from apoptotic VSMCs induced VSMC apoptosis in vitro, and IL-6 and GM-CSF acted as pro-survival factors for AIA. VSMC apoptosis was studied in vivo using SM22α-DTR mice that express the diphtheria toxin receptor in VSMCs only. DT administration induced VSMC apoptosis and VSMC proliferation, and also signficantly induced IL-6 and GM-CSF. We conclude that VSMC apoptosis activates multiple caspase-independent intracellular signaling cascades, leading to release of soluble cytokines involved in regulation of both cell proliferation and apoptosis. VSMC AICP may ameliorate while AIA may amplify the effects of pro-apoptotic stimuli in vessel remodeling and disease

    Optimization of the headspace solid-phase microextraction gas chromatography for volatile compounds determination in Phytophthora cinnamomi rands

    Get PDF
    Phytophthora cinnamomi (P. c) is a plant pathogenic oomycete that is capable of damaging plants in commercial production systems and natural ecosystems worldwide. The most common methods for the detection and diagnosis of P. c infection are expensive, elaborate and time consuming. This study was carried out to examine whether species specific and life cycle specific volatile organic compounds (VOCs) can be absorbed by solid-phase microextraction fibers and detected by gas chromatography that are produced by P. c and another oomycete Pythium dissotocum. A headspace solid-phase microextraction (HS-SPME) together with gas chromatography (GC) method was developed and optimized for the identification of the VOCs released by P. c. The optimized parameters included type of fiber, exposure time, desorption temperature and desorption time. Optimization was achieved with the analytes of P. c+V8A and V8A alone. To perform the HS-SPME, six types of fiber were assayed and compared: 7μm Polydimethylsiloxane (PDMS), 100μm Polydimethylsiloxane (PDMS), 50/30μm Divinylbenzene/CarboxenTM/Polydimethylsiloxane DVB/CAR/PDMS), 65μm Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), 85μm Polyacrylate (PA) fibre and 85μm CarboxenTM/Polydimethylsiloxane (Carboxen™/PDMS). In a comparison of the efficacy of the fibers, the bipolar fiber DVB/CAR/PDMS had a higher extraction efficiency than the other fibers. An exposure time of 16h with DVB/CAR/PDMS fiber in the sample headspace was enough to reach the maximum extraction efficiency. A desorption time of 3min in the GC injector with the desorption temperature of 250°C was enough for the fiber to desorb the compounds of interest. The chromatograms and morphology study confirmed that the VOCs from P. c+V8A had distinct differences from V8A alone, as did different life cycle stages of P. c and different taxa such as Pythium dissotocum. The study proved that P. c has species and life cycle specific VOCs, which in turn demonstrated the feasibility of this method as means of identifying P. c

    Self-sensing cementitious composites with hierarchical carbon fiber-carbon nanotube composite fillers for crack development monitoring of a maglev girder

    No full text
    YesIn view of high-performance, multifunctional and low-carbon development of infrastructures, there is a growing demand for smart engineering materials, making infrastructures intelligent. This paper reports a new-generation self-sensing cementitious composite (SSCC) incorporated with a hierarchically structured carbon fiber-carbon nanotube composite filler (CF-CNT), which is in-situ synthesized by directly growing CNT on CF. Various important factors including catalyst, temperature, and gas composition are considered to investigate their kinetic and thermodynamic influence on CF-CNT synthesis. The reciprocal architecture of CF-CNT not only alleviates the CNT aggregation, but also significantly improves the interfacial bonding between CF-CNTs and matrix. Due to the synergic and spatially morphological effects of CF-CNT, i.e., the formation of widely distributed multiscale reinforcement networks, SSCCs with CF-CNTs exhibit high mechanical properties and electrical conductivity as well as excellent self-sensing performances, particularly enhanced sensing repeatability. Moreover, the SSCCs with CF-CNTs are integrated into a full-scale maglev girder to devise a smart system for crack development monitoring. The system demonstrates high sensitivity and fidelity to capture the initiation of cracks/damage, as well as progressive and sudden damage events until complete failure of the maglev girder, indicating its considerable potential for structural health monitoring of infrastructures.The work described in this paper is supported by grants from the National Science Foundation of China (51978127 and 51578110) and grants from the China Postdoctoral Science Foundation (2022M710973 and 2022M720648).The full-text of this article will be released for public view at the end of the publisher embargo on 20th Dec 2023
    • …
    corecore