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Abstract 

To develop highly efficient narrow-bandwidth multilayer optics for the soft X-ray (SXR) spectroscopy, a low optical contrast 

MoSi2/Si lamellar multilayer grating (LMG) was proposed and developed. The low contrast LMG allows for a large lamel 

width which can potentially achieve higher resolution than the conventional LMG and simplify the fabrication. As a first 

demonstration, a MoSi2/Si multilayer with a d-spacing of 5 nm and 180 bilayers was deposited. The lamellar grating structure 

with a period of 614 nm, lamel-to-period ratio of 0.38, and lamel height of 670 nm was fabricated in the multilayer with 

reactive ion etching process. The SXR measurements show a high 0th-order diffraction efficiency of 16%–33% at 876 eV–

1648 eV, which reaches around 80% of the unetched multilayer reflectivity. A maximal bandwidth reduction of 2.2 times was 

obtained compared with the multilayer mirror, indicating an energy resolution of E/ΔE = 108 at 1183 eV. The resolution can be 

further improved by reducing the multilayer d-spacing and increasing the etching depth. 
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1. Introduction 

One-dimensional multilayer structures have long been 

used as mirrors for the soft X-ray (SXR) and extreme 

ultraviolet (EUV) ranges. They enable the reflection of 

SXR/EUV light above the total external reflection region (up 

to the normal incidence) and bring the advantages of large 

numerical apertures and high efficiency for high-resolution 

imaging [ 1 ] and manufacturing [ 2 ]. To extend their 

applicability, the one-dimensional multilayer mirror (MM) is 

combined with two-dimensional diffraction structures, such 

as the blazed multilayer grating [3,4] or lamellar multilayer 

grating (LMG) [5], or is sectioned directly to become a 

diffraction element, like the sliced multilayer grating and 

multilayer Laue Lens [6].  

Deeply etched LMG, the structure of which can be seen in 

Fig. 1, provides more freedom for the bandwidth tuning of a 

multilayer. The bandwidth of a conventional MM is 

determined by the number of bilayers (N) contributing to the 

Bragg reflection, which is limited by X-ray absorption. The 

resolution (E/ΔE) is typically around 50 in the SXR/EUV 

ranges [5], in which the absorptivity of all materials is high. 

However, X-ray fluorescence or other emission spectroscopy 

requires high-resolution dispersive optics to resolve close 

emission lines and their shapes for an elemental analysis or 

plasma diagnostics [7, 8]. Deep etching of grating structures 

into an MM decreases the X-ray absorption and increases the 

radiation penetration depth and LMG resolution. In the early 

works, LMGs based on different multilayer structures have 

been designed and fabricated for the energy range from B-K 

to Ar-K emission lines [9,10].  

To further understand the diffraction behavior and 

optimal performance of the LMGs, Kozhevnikov et al. 

established a single-order operation regime for the LMGs 

[11,12], i.e. the incident wave excites only one diffraction 

wave and the 0
th

 order diffraction efficiency of an LMG can 

reach the peak reflectance of conventional MMs, whereas 

the reflectivity bandwidth Δθ is decreased by a factor of Γ 
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(the ratio of the lamel width to the grating period D). The 

necessary condition of the single-order regime is that the 

angular width of the diffraction peak Δθ = ΓΔθMM is 

essentially narrower than the angular distance (in terms of 

the incidence angle) between neighboring diffraction peaks 

δθ ≈ d/D, where d is the MM period and ΔθMM is the angular 

width of the initial MM. Thus, the necessary condition is 

written in the following form 

                              ΓDΔθMM ≪d,                                    (1) 

More detailed discussion of Eq. (1) is given in [11, 12], 

where, the "much less" in Eq. (1) implies that the value is 

smaller by at least a factor of 3~5, depending on the spectral 

region. Note that condition (1) depends on the lamel width 

ΓD rather than on the grating period, which makes the lamel 

width a critical parameter in the fabrication of LMG. Based 

on the theoretical results obtained in [11,12], van der Meer et 

al. designed and fabricated high-aspect ratio W/Si LMGs [13] 

operating in the single-order regime, with the diffraction 

efficiency reached above 80% of the multilayer mirror 

reflectivity.  

 
Fig. 1. Schematic of the low optical contrast LMG structure 

characterized by the grating period D and lamel width ΓD. The 

multilay inside each lamel has a period of d and a total thickness of 

h. The incident beam is diffracted into a set of waves by the grating. 

However, if the condition of the single-order regime (Eq. (1)) is 

fulfilled, only one diffraction wave, e.g., the 0th order is effectively 

excited as depicted here. 

     An LMG design with a desired reflectivity bandwidth ΔE 

at photon energy E consists of several steps: (a) The 

materials and structure parameters of the initial MM are 

chosen in accordance with the principles described in [14] to 

achieve maximal reflectivity; (b) the grating ratio Γ is 

chosen considering the desired spectral resolution with Γ = 

ΔE/(ΔE)MM, where ΔE and (ΔE)MM is the spectral reflectivity 

bandwidth of the LMG and the initial MM, respectively; (c) 

the number of bilayers is increased by a factor of 1/ Γ 

compared with the initial MM; (d) the grating period D is 

chosen to realize condition (1) of the single-order regime. 

We note that the LMG resolution is independent of the 

chosen material pair of the MM. This is because the single-

order LMG can be considered as a conventional MM with 

the density of both materials decreased by the factor Γ 

[11,12]. Hence, theoretically speaking, the optical contrast 

between neighboring layers can be reduced to any desired 

value independent of the real LMG materials. Previous 

works on LMG mainly choose conventional high optical 

contrast materials for the multilayer. 

However, there are technical limitations imposed by the 

current fabrication technology on the geometrical parameters 

and possible material pairs of the LMGs. Indeed, the angular 

bandwidth of a conventional MM in Eq. (1) increases by λ
2
 

with increasing wavelength λ, whereas the MM period d is 

approximately proportional to λ. Therefore, the condition of 

the single-order regime (1) becomes more rigid with 

increasing λ. Let us suppose that we need a high-resolution 

LMG operating at approximately λ = 13.5 nm, e.g., for 

metrology and monitoring of radiation sources used in an 

EUV lithography system [15]. The maximal reflectivity is 

achieved with Mo/Si MMs (approximately 74% for s-

polarization in theory), the angular bandwidth of which is 

4.98° at θ = 45° grazing incidence angle and thickness ratio γ 

= dMo/d = 0.35. The d-spacing of the MM is d=10 nm. 

Consequently, according to Eq. (1), the maximal possible 

lamel width is only 38.7 nm (“much less” means a factor of 

3 here).   

To date, the minimal lamel width achieved experimentally 

is 60 nm [13] and the aspect ratio (lamella height-to-width) 

is about 17. The fabrication of LMGs with smaller lamel 

widths is very difficult as the etching of such a grating 

structure can cause severe damage to the multilayer inside 

the lamels or even collapse of the lamellar structure. 

However, if we use MoSi2/Si MMs with a lower optical 

contrast, the reflectivity bandwidth decreases to 2.27° (at γ = 

0.4), the peak reflectivity also decreases to 54%, whereas the 

maximal possible lamel width increases to a practicable 

value of 82.9 nm. Therefore, we believe that the use of MM 

with low optical contrast is the only way to fabricate high-

resolution LMGs with practical efficiency operating in the 

EUV region.  

The choice of a material pair with low optical contrast is 

also important for the LMGs operating in the SXR spectral 

region. Let us consider the design of an LMG operating at 

approximately λ = 1 nm (E = 1.2 keV) with a high resolution 

(E/ΔE). The necessary number of bilayers should be NLMG 

~ E/ΔE. The lamel height, being an additional crucial 

etching parameter, is equal to h = NLMGd, thus being minimal 

for a small bilayer thickness d. Following [13], we set d = 

2.5 nm and the thickness of the absorbing layer to 1 nm, 

assuming that the thickness is practicable for the deposition 

of smooth continuous films. Let us consider three LMGs 

based on W/Si, MoSi2/Si, and SiC/Si MMs with different 

optical contrasts between the neighboring layers. We neglect 

the formation of interlayers for simplicity of analysis. Please 

note that the peak reflectivity of the MMs is 47%, 45%, and 

34%, respectively. According to Eq. (1); the maximal 

possible lamel widths are approximately 156 nm, 366 nm, 

and 1110 nm for W/Si, MoSi2/Si, and SiC/Si LMGs, 

respectively, while a factor of 5 for the “much less” value is 

needed here. Evidently, the wider the lamel, the easier it can 

be fabricated.  

Assuming the achievable aspect ratio (i.e., the lamel 

height-to-width ratio) of A=17 [13], the number of bilayers 

of LMG should be approximately 1060, 2489, and 7548 for 



W/Si, MoSi2/Si, and SiC/Si MMs, respectively. We do not 

discuss here the detailed problems of the deposition and etch 

process of different material pairs. The mentioned values 

characterize the ultimate spectral resolution E/ΔE of 540, 

1310, and 4470, respectively, which can be achieved with 

the corresponding LMGs. Therefore, if we need an LMG 

with an ultrahigh resolution exceeding e.g. 600, only MMs 

with low optical contrast can be used. 

On the other hand, if MMs with low optical contrasts are 

used, the same resolution can be obtained with an essentially 

lower lamel aspect ratio, which significantly simplifies the 

LMG fabrication. Moreover, the diffraction efficiency of 

LMG with a larger lamel width is less sensitive to etching 

damages occurring on sidewalls [16]. A schematic of the low 

contrast LMG structure is shown in Fig. 1, characterized by 

the essentially larger lamel width (ΓD) that can satisfy the 

single-order condition compared to the high contrast LMG. 

The theoretical efficiency and required structures of the 

W/Si and MoSi2/Si LMGs to achieve a same resolution of 

540 are shown in Fig. 2. The grazing incident angle is 

around 11.95°. For the W/Si LMG, the lamel width is 158 

nm with a grating period of D=1216 nm and a large aspect 

ratio of A=17. For the MoSi2/Si LMG, the lamel width is 

increased to 368 nm with a similar period of D=1170 nm and 

the aspect ratio is much smaller, A=7.3. The reflectance of 

W/Si and MoSi2/Si MM is also shown as a comparison. 

These advantages make LMGs with low-optical-contrast 

materials more promising in terms of achieving high 

resolution and efficiency. In the present study, we 

demonstrate for the first time the feasible fabrication of a 

low-optical-contrast MoSi2/Si LMG and characterize its 

performance in the SXR range.  

 
Fig. 2 Theoretical efficiency of the W/Si and MoSi2/Si LMGs with 

the maximal possible lamel widths and a same resolution of 

E/ΔE=540 at around 1200 eV. The reflectance of the two MMs is 

also shown. The d-spacings of all MLs are 2.5 nm. 

2. Experimental results 

A MoSi2/Si LMG was designed with Γ = 1/3, D = 600 nm, 

and a lamel width of 200 nm. This relatively small lamel 

width was chosen to completely satisfy the single-order 

condition (1). The multilayer structure was designed with 

dMo = 2 nm and dSi = 3 nm to guarantee good MM quality for 

the subsequent etching process. The number of MM bilayers 

NML= 60 is sufficient to obtain a reflectivity close to the 

maximal one at the photon energy of 1.2 keV. Thus, the 

bilayer number for the LMG was increased to NLMG = 

NML/Γ = 180 with a total thickness of h = 900 nm.  

The multilayer was fabricated using the direct-current 

magnetron sputtering. The base pressure before the 

deposition was 9×10
-5

 Pa and the working pressure was 0.13 

Pa with high-purity Ar. The deposition rates of MoSi2 and Si 

were approximately 0.11 nm/s. The MM was deposited on 

super-polished Si wafers with a surface roughness below 0.2 

nm. The fabricated MM was first characterized by grazing 

incidence X-ray reflectometry (GIXR) using the Cu-Kα line 

(E = 8.05 keV) in a lab-based X-ray diffractometer. Apart 

from the interface quality, the layer thickness drift over the 

MM stack is another critical factor decreasing the reflectance 

and broadening the reflectivity peak; in particular, that of a 

narrowband LMG [13]. To estimate the real multilayer 

structure, a two-layer model of MoSi2/Si was used to fit the 

GIXR curve using the IMD software [17]. The thickness 

drifts of both MoSi2 and Si layers were included in the 

model. As seen in Fig. 1, the fitted curve coincides well with 

the measured GIXR curve. The angular width of the high-

order Bragg peaks, which are sensitive to the thickness drift 

over the MM stack, is also consistent with the measurement. 

According to the fitted results, the interface width (including 

roughness and diffusion) is approximately 0.32 nm, 

assuming an error function of the interface profile. The 

density of the Si layers is close to the bulk value (2.33 

g/cm
3
), and the density of the MoSi2 layers is approximately 

87% of the bulk value (6.31 g/cm
3
). A nonlinear drift of the 

MM period was estimated to be approximately 0.05 nm in 

the complete MM stack. This kind of thickness drift was also 

found in other works [18] and its  effect will be further 

discussed later. The surface morphology of the multilayer 

was measured by atomic force microscopy (AFM) with a 

scanning area of 1×1μm
2
. The roughness is very small, with 

a root-mean-square value of 0.17 nm. This is consistent with 

the relatively small interface width found above. 

 
Fig. 3. Measured (circles) and fitted (solid curve) reflectivity at E = 

8.05 keV of fabricated MoSi2/Si MM with 180 bilayers. Inset: 

Enlarged 3rd order Bragg peak. 

The LMG was fabricated using a combined process of 

electron beam lithography (EBL) and reactive ion etching. 

The grating pattern with a period of 600 nm was first defined 

via EBL in the resist coated on the MM surface. In the first 



demonstration, the resist was directly used as the etching 

mask to etch the grating structure into the MM. To achieve a 

high aspect ratio of the LMG, the Bosch-type deep-etching 

technique was chosen using SF6 and C4F8 as etching and 

passivation gases, respectively [19,20]. The etching process 

was optimized to obtain vertical sidewalls and to minimize 

damages in the multilayer. The etched grating structure was 

characterized via scanning electron microscopy (SEM) (Fig. 

4). The period of the fabricated grating is D = 614 nm and 

the ratio of the lamel width to the grating period is Γ=~0.38. 

The etching depth is approximately 670 nm; i.e., 

approximately 45 bilayers at the bottom were not etched. 

This will cause a slight increase in the bandwidth and a loss 

in the reflectance compared with the fully etched LMG 

structure. The grating sidewalls are formed vertically which 

indicate a good directionality of the etching process. The 

nanoscale multilayer inside each lamel was studied using 

transmission electron microscopy (TEM). The TEM 

measurements were performed with FEI Talos equipment, 

and the sample was prepared by the focused ion beam 

technique. As shown in Fig. 5 the layers remained almost 

intact inside the lamel from the top surface to the bottom. 

The interfaces between MoSi2 and Si layers are flat and 

sharp and the layers are in amorphous state according to the 

electron diffraction measurement (Fig. 5d). Only a small 

damaged area with a width of approximately 5 nm was 

found near the sidewalls (Fig. 5b). It is indicated that a good 

quality of the multilayer is preserved after etching. 

 
Fig. 4. An SEM image of the cross-section of the fabricated 

MoSi2/Si LMG. 

To study the SXR performance, both the MM and LMG 

were measured at the optics beamline of the BESSY-II 

synchrotron radiation facility [21]. A 1200 l/mm grating was 

used in the monochromator, providing an energy bandwidth 

of approximately 0.2 eV and a 0.13 angular divergence (full 

width at half maximum, FWHM) of the s-polarized beam at 

E =~1 keV. The unetched MM was first measured at grazing 

incidence angles of 8.4°, 6.14°, and 4.4° for different energy 

intervals (Fig. 6a, b, c). The experimental reflectance is 20%, 

32%, and 45% at 881 eV, 1199 eV, and 1670 eV, 

respectively. The gradually increased reflectance is due to 

the lower absorption of MoSi2 and Si at energies close to the 

Si-K edge (E = 1.83 keV). The fitting of the measured SXR 

reflectance results in almost the same parameters regarding 

those deduced from the HXR curve (Fig. 3). The measured 

spectral resolution of the MM is E/ΔE = 48–57 for 881–1670 

eV. The parameters characterizing the theoretical and 

experimental SXR performance are listed in Table 1. The 

discrepancy between theoretical reflectance/bandwidth and 

the experimental values of the MM are caused by the 

interface roughness/diffusion and the slightly lower density 

of the layers compared to the bulk value. 

 
Fig. 5 TEM images of the etched grating lamel (a) and the 

multilayer strcutures inside the lamel (b, c). A electron diffracion 

pattern of the multilayer is shown in (d). 

    The 0th-order efficiency (reflectivity) of the fabricated 

LMG was measured at the same incidence angles to compare 

the results with those of the MM. High efficiencies of 16%, 

26%, and 33% for 876 eV, 1183 eV, and 1648 eV were 

achieved, respectively (Fig. 6). The LMG reflectance 

reaches 80%–73% of the MM values. The shift in the peak 

position compared with that of the MM is caused by the 

different effective densities of the layers in the MM and 

LMG [11]. The energy bandwidths (FWHM) decreased to 

8.3 eV (E = 876 eV), 11.0 eV (E = 1183 eV), and 16.1 eV (E 

= 1648 eV), which correspond to 45%–54% of the values of 

the initial MM. Thus, the spectral resolution is improved to 

E/ΔE=106–103 with a maximal enhancement factor of 2.2.  

    The dependence of the SXR efficiency on the grazing 

incidence angle was also measured at E = 1200 eV (Fig. 6d). 

The angular bandwidths of the MM and LMG are 0.116° and 

0.056°, respectively. Thus, the angular bandwidth reduction 

is approximately 2.1, as in the energy resolution. 

Considering the narrow angular bandwidth of the LMG, an 

angular accuracy of <±0.015° is needed to maintain above 

80% of the maximum 0th order efficiency and to select the 

exact photon energy. This brings a high requirement on the 

alignment accuracy for the application of such multilayer 

grating optics. 

    Given to the Γ ratio of 0.38, the resolution enhancement is 

expected to be 1/Γ = 2.6. The discrepancy in the expected 

and measured bandwidths as well as the reflectance losses 

can be explained as follows: First, the 180 bilayers were not 

completely etched, which reduces the reflectance and 

broadens the reflectivity peak by an approximate factor of 

1.09 according to simulations. The second reason is the 



thickness drift inside the multilayer. The LMG has a smaller 

tolerance for thickness variations than the mirror owing to a 

smaller bandwidth [13]. The 50 pm drift of the d-spacing 

over the multilayer stack broadens the Bragg peak by a 

factor of ~1.14 and decreases the reflectance by ~5 rel.% 

compared with an ideal LMG without drift. 

    To compare the experimental and expected LMG 

performance in more detail, the SXR efficiency of the 

imperfect LMG was simulated. We assumed for simplicity 

that imperfections in the multilayer structure (interfacial 

roughness, possible oxygen and argon admixtures in layers) 

influence the MM and LMG reflectivity by the same manner. 

Therefore, we can introduce a reflectance factor (RF) as the 

ratio of the experimental peak reflectance of the MM to its 

theoretical value. The efficiency of the fabricated LMG was 

simulated using the structure parameters estimated from the 

SEM image and further decreasing them by the RF value. 

The simulation results are shown in Fig. 6a-c by dashed 

curves. They describe adequately the measured LMG 

efficiency including oscillations observed at the high-energy 

side of the peak. The oscillations are caused by the 

interference of waves reflected from the LMG and unetched 

MM underneath. The effect is more pronounced in the high-

energy region, where the unetched MM reflectivity is high. 

It is noteworthy that the calculated peak efficiency is still 

slightly higher than the measured ones in spite of the 

included imperfections of the MM. An additional efficiency 

loss can be explained by specific LMG imperfections caused 

during the grating structure fabrication, such as a damage of 

the multilayer structure induced by etching (in particular, 

near the lamel sidewalls) and deviations of the lamel shape 

from an ideal rectangle (Fig. 4). The effects of both factors 

on the LMG efficiency and resolution were analyzed in [16]. 

 

 
Fig. 6. Measured (symbols) and calculated (solid and dashed curves) SXR reflectivity of MoSi2/Si MM and LMG versus photon energy at 

different grazing incidence angles of (a) 8.4°, (b) 6.14°, and (c) 4.4° and (d) versus the grazing angle at E = 1200 eV.  

Table 1 Parameters of the theoretical and measured SXR performance of the fabricated MM and LMG 

 Grazing angle = 8.4° Grazing angle = 6.14° Grazing angle = 4.4° 

 Efficiency ΔE (eV) E/ΔE E (eV) Efficiency ΔE (eV) E/ΔE E (eV) Efficiency ΔE (eV) E/ΔE E (eV) 

MM 

theo.* 28% 21.7 41 881 44% 27.5 44 1200 60% 37.1 45 1670 

MM 

expe. 20% 18.5 48 881 32% 22.5 53 1199 45% 29.5 57 1670 

LMG 

theo.** 26% 9.2 94 865 41% 12.2 97 1181 55% 18.8 88 1644 

LMG 

expe. 
16% 8.3 106 867 26% 11.0 108 1183 33% 16.1 103 1648 

*The theoreical efficiency of MM is calculated with the ideal structure. **The theoretical effiicency of LMG is calculated with the grating 

profile obtained from SEM images and the ideal multilayer structure. 

3. Summary 

It has been theoretically showed that high efficiency and 

high resolution LMGs operating in the SXR/EUV region can 

only be realized with low optical contrast materials 

composing the multilayer structure. For a first demonstration, 

a MoSi2/Si MM (d = 5 nm, N = 180) was deposited using 

magnetron sputtering. The Bosch-type deep-etching process 

was optimized for the fabrication of the grating structure and 

minimizing layer damages. The SXR measurements exhibit 

a high reflectivity (0th-order diffraction efficiency) of the 

LMG, achieving 16%–33% for 876 eV–1648 eV, i.e., 73%–

80% of the reflectance of the unpatterned MM. The 

resolution of the LMG exceeds 100 with a maximal increase 

factor of 2.2, compared with the conventional MM. The 

experimental values are rather close to the theoretical ones. 

Further improvements in the MoSi2/Si LMG include 

reducing the multilayer period to 2.5 nm, increasing the 

etching depth and lamel width to the maximal theoretical 



value that satisfies the single-order operation regime, and 

decreasing the period drift in the MM. These will be 

investigated in the future studies.  
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