562 research outputs found

    High Power CMUTs: Design and experimental verification

    Get PDF
    Cataloged from PDF version of article.Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with piezoelectric transducers in high-power applications. As the output pressures increase, nonlinearity of CMUT must be reconsidered and optimization is required to reduce harmonic distortions. In this paper, we describe a design approach in which uncollapsed CMUT array elements are sized so as to operate at the maximum radiation impedance and have gap heights such that the generated electrostatic force can sustain a plate displacement with full swing at the given drive amplitude. The proposed design enables high output pressures and low harmonic distortions at the output. An equivalent circuit model of the array is used that accurately simulates the uncollapsed mode of operation. The model facilities the design of CMUT parameters for high-pressure output, without the intensive need for computationally involved FEM tools. The optimized design requires a relatively thick plate compared with a conventional CMUT plate. Thus, we used a silicon wafer as the CMUT plate. The fabrication process involves an anodic bonding process for bonding the silicon plate with the glass substrate. To eliminate the bias voltage, which may cause charging problems, the CMUT array is driven with large continuous wave signals at half of the resonant frequency. The fabricated arrays are tested in an oil tank by applying a 125-V peak 5-cycle burst sinusoidal signal at 1.44 MHz. The applied voltage is increased until the plate is about to touch the bottom electrode to get the maximum peak displacement. The observed pressure is about 1.8 MPa with −28 dBc second harmonic at the surface of the array

    Use of high resolution 3D diffusion tensor imaging to study brain white matter development in live neonatal rats

    Get PDF
    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment

    Gender recognition from a partial view of the face using local feature vectors

    Get PDF
    This paper proposes a gender recognition scheme focused on local appearance-based features to describe the top half of the face. Due to the fact that only the top half of the face is used, this is a feasible approach in those situations where the bottom half is hidden. In the experiments, several face detection methods with different precision levels are used in order to prove the robustness of the scheme with respect to variations in the accuracy level of the face detection proces

    Black Sea coastal forecasting system

    Get PDF
    The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system) project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast

    Domain-matched Pre-training Tasks for Dense Retrieval

    Get PDF
    Pre-training on larger datasets with ever increasing model size is now a proven recipe for increased performance across almost all NLP tasks. A notable exception is information retrieval, where additional pre-training has so far failed to produce convincing results. We show that, with the right pre-training setup, this barrier can be overcome. We demonstrate this by pre-training large bi-encoder models on 1) a recently released set of 65 million synthetically generated questions, and 2) 200 million post-comment pairs from a preexisting dataset of Reddit conversations. We evaluate on a set of information retrieval and dialogue retrieval benchmarks, showing substantial improvements over supervised baselines

    Integrated Quantum Optical Phase Sensor

    Full text link
    The quantum noise of light fundamentally limits optical phase sensors. A semiclassical picture attributes this noise to the random arrival time of photons from a coherent light source such as a laser. An engineered source of squeezed states suppresses this noise and allows sensitivity beyond the standard quantum limit (SQL) for phase detection. Advanced gravitational wave detectors like LIGO have already incorporated such sources, and nascent efforts in realizing quantum biological measurements have provided glimpses into new capabilities emerging in quantum measurement. We need ways to engineer and use quantum light within deployable quantum sensors that operate outside the confines of a lab environment. Here we present a photonic integrated circuit fabricated in thin-film lithium niobate that provides a path to meet these requirements. We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics. Using a 26.2 milliwatts of optical power, we measure (2.7 ±\pm 0.2 )%\% squeezing and apply it to increase the signal-to-noise ratio of phase measurement. We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.Comment: 14 pages, 3+3 figure

    Integrated frequency-modulated optical parametric oscillator

    Full text link
    Optical frequency combs have revolutionized precision measurement, time-keeping, and molecular spectroscopy. A substantial effort has developed around "microcombs": integrating comb-generating technologies into compact, reliable photonic platforms. Current approaches for generating these microcombs involve either the electro-optic (EO) or Kerr mechanisms. Despite rapid progress, maintaining high efficiency and wide bandwidth remains challenging. Here, we introduce a new class of microcomb -- an integrated optical frequency comb generator that combines electro-optics and parametric amplification to yield a frequency-modulated optical parametric oscillator (FM-OPO). In stark contrast to EO and Kerr combs, the FM-OPO microcomb does not form pulses but maintains operational simplicity and highly efficient pump power utilization with an output resembling a frequency-modulated laser. We outline the working principles of FM-OPO and demonstrate them by fabricating the complete optical system in thin-film lithium niobate (LNOI). We measure pump to comb internal conversion efficiency exceeding 93% (34% out-coupled) over a nearly flat-top spectral distribution spanning approximately 1,000 modes (approximately 6 THz). Compared to an EO comb, the cavity dispersion rather than loss determines the FM-OPO bandwidth, enabling broadband combs with a smaller RF modulation power. The FM-OPO microcomb, with its robust operational dynamics, high efficiency, and large bandwidth, contributes a new approach to the field of microcombs and promises to herald an era of miniaturized precision measurement, and spectroscopy tools to accelerate advancements in metrology, spectroscopy, telecommunications, sensing, and computing.Comment: 8 pages, 4 figures main text; another 19 pages and 9 figures in methods and supplementar

    Investigation of transition frequencies of two acoustically coupled bubbles using a direct numerical simulation technique

    Full text link
    The theoretical results regarding the ``transition frequencies'' of two acoustically interacting bubbles have been verified numerically. The theory provided by Ida [Phys. Lett. A 297 (2002) 210] predicted the existence of three transition frequencies per bubble, each of which has the phase difference of π/2\pi /2 between a bubble's pulsation and the external sound field, while previous theories predicted only two natural frequencies which cause such phase shifts. Namely, two of the three transition frequencies correspond to the natural frequencies, while the remaining does not. In a subsequent paper [M. Ida, Phys. Rev. E 67 (2003) 056617], it was shown theoretically that transition frequencies other than the natural frequencies may cause the sign reversal of the secondary Bjerknes force acting between pulsating bubbles. In the present study, we employ a direct numerical simulation technique that uses the compressible Navier-Stokes equations with a surface-tension term as the governing equations to investigate the transition frequencies of two coupled bubbles by observing their pulsation amplitudes and directions of translational motion, both of which change as the driving frequency changes. The numerical results reproduce the recent theoretical predictions, validating the existence of the transition frequencies not corresponding to the natural frequency.Comment: 18 pages, 8 figures, in pres

    Assessment of breast pathologies using nonlinear microscopy

    Get PDF
    Rapid intraoperative assessment of breast excision specimens is clinically important because up to 40% of patients undergoing breast-conserving cancer surgery require reexcision for positive or close margins. We demonstrate nonlinear microscopy (NLM) for the assessment of benign and malignant breast pathologies in fresh surgical specimens. A total of 179 specimens from 50 patients was imaged with NLM using rapid extrinsic nuclear staining with acridine orange and intrinsic second harmonic contrast generation from collagen. Imaging was performed on fresh, intact specimens without the need for fixation, embedding, and sectioning required for conventional histopathology. A visualization method to aid pathological interpretation is presented that maps NLM contrast from two-photon fluorescence and second harmonic signals to features closely resembling histopathology using hematoxylin and eosin staining. Mosaicking is used to overcome trade-offs between resolution and field of view, enabling imaging of subcellular features over square-centimeter specimens. After NLM examination, specimens were processed for standard paraffin-embedded histology using a protocol that coregistered histological sections to NLM images for paired assessment. Blinded NLM reading by three pathologists achieved 95.4% sensitivity and 93.3% specificity, compared with paraffin-embedded histology, for identifying invasive cancer and ductal carcinoma in situ versus benign breast tissue. Interobserver agreement was κ = 0.88 for NLM and κ = 0.89 for histology. These results show that NLM achieves high diagnostic accuracy, can be rapidly performed on unfixed specimens, and is a promising method for intraoperative margin assessment.National Institutes of Health (U.S.) (Grant R01-CA178636-01)National Institutes of Health (U.S.) (Grant R01-CA75289-16)United States. Air Force Office of Scientific Research (Grant FA9550-10-1-0551)United States. Air Force Office of Scientific Research (Grant FA9550-12-1-0499)National Institutes of Health (U.S.) (National Research Service Award Postdoctoral Fellowship F32-CA165484
    corecore