36,773 research outputs found
Physics of planetary atmospheres. i- ray- leigh scattering by helium
Physics of planetary atmospheres - Variation method used to calculate Rayleigh scattering cross sections of helium as wavelength functio
Dual WDVV Equations in N=2 Supersymmetric Yang-Mills Theory
This paper studies the dual form of Witten-Dijkgraaf-Verlinde-Verlinde (WDVV)
equations in N=2 supersymmetric Yang-Mills theory by applying a duality
transformation to WDVV equations. The dual WDVV equations called in this paper
are non-linear differential equations satisfied by dual prepotential and are
found to have the same form with the original WDVV equations. However, in
contrast with the case of weak coupling calculus, the perturbative part of dual
prepotential itself does not satisfy the dual WDVV equations. Nevertheless, it
is possible to show that the non-perturbative part of dual prepotential can be
determined from dual WDVV equations, provided the perturbative part is given.
As an example, the SU(4) case is presented. The non-perturbative dual
prepotential derived in this way is consistent to the dual prepotential
obtained by D'Hoker and Phong.Comment: misprints are corrected, revtex, 10 page
Thermoelectric Properties of Intermetallic Semiconducting RuIn3 and Metallic IrIn3
Low temperature (<400 K) thermoelectric properties of semiconducting RuIn3
and metallic IrIn3 are reported. RuIn3 is a narrow band gap semiconductor with
a large n-type Seebeck coefficient at room temperature (S(290K)~400 {\mu}V/K),
but the thermoelectric Figure of merit (ZT(290K) = 0.007) is small because of
high electrical resistivity and thermal conductivity ({\kappa}(290 K) ~ 2.0 W/m
K). IrIn3 is a metal with low thermopower at room temperature (S(290K)~20
{\mu}V/K) . Iridium substitution on the ruthenium site has a dramatic effect on
transport properties, which leads to a large improvement in the power factor
and corresponding Figure of merit (ZT(380 K) = 0.053), improving the efficiency
of the material by an over of magnitude.Comment: Submitted to JA
Poly(ethylene glycol) (PEG) in a Polyethylene (PE) Framework: A Simple Model for Simulation Studies of a Soluble Polymer in an Open Framework.
Canonical molecular dynamics simulations are performed to investigate the behavior of single-chain and multiple-chain poly(ethylene glycol) (PEG) contained within a cubic framework spanned by polyethylene (PE) chains. This simple model is the first of its kind to study the chemical physics of polymer-threaded organic frameworks, which are materials with potential applications in catalysis and separation processes. For a single-chain 9-mer, 14-mer, and 18-mer in a small framework, the PEG will interact strongly with the framework and assume a more linear geometry chain with an increased radius of gyration Rg compared to that of a large framework. The interaction between PEG and the framework decreases with increasing mesh size in both vacuum and water. In the limit of a framework with an infinitely large cavity (infinitely long linkers), PEG behavior approaches simulation results without a framework. The solvation of PEG is simulated by adding explicit TIP3P water molecules to a 6-chain PEG 14-mer aggregate confined in a framework. The 14-mer chains are readily solvated and leach out of a large 2.6 nm mesh framework. There are fewer water-PEG interactions in a small 1.0 nm mesh framework, as indicated by a smaller number of hydrogen bonds. The PEG aggregate, however, still partially dissolves but is retained within the 1.0 nm framework. The preliminary results illustrate the effectiveness of the simple model in studying polymer-threaded framework materials and in optimizing polymer or framework parameters for high performance
Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios
第6回極域科学シンポジウム[OA] 南極隕石11月16日(月) 国立国語研究所 2階 講
Recommended from our members
Relationship between the molecular composition, visible light absorption, and health-related properties of smoldering woodsmoke aerosols
Organic aerosols generated from the smoldering combustion of wood critically impact air quality and health for billions of people worldwide; yet, the links between the chemical components and the optical or biological effects of woodsmoke aerosol (WSA) are still poorly understood. In this work, an untargeted analysis of the molecular composition of smoldering WSA, generated in a controlled environment from nine types of heartwood fuels (African mahogany, birch, cherry, maple, pine, poplar, red oak, redwood, and walnut), identified several hundred compounds using gas chromatography mass spectrometry (GCMS) and nano-electrospray high-resolution mass spectrometry (HRMS) with tandem multistage mass spectrometry (MSn). The effects of WSA on cell toxicity as well as gene expression dependent on the aryl hydrocarbon receptor (AhR) and estrogen receptor (ER) were characterized with cellular assays, and the visible mass absorption coefficients (MACvis) of WSA were measured with ultraviolet-visible spectroscopy. The WSAs studied in this work have significant levels of biological and toxicological activity, with exposure levels in both an outdoor and indoor environment similar to or greater than those of other toxicants. A correlation between the HRMS molecular composition and aerosol properties found that phenolic compounds from the oxidative decomposition of lignin are the main drivers of aerosol effects, while the cellulose decomposition products play a secondary role; e.g., levoglucosan is anticorrelated with multiple effects. Polycyclic aromatic hydrocarbons (PAHs) are not expected to form at the combustion temperature in this work, nor were they observed above the detection limit; thus, biological and optical properties of the smoldering WSA are not attributed to PAHs. Syringyl compounds tend to correlate with cell toxicity, while the more conjugated molecules (including several compounds assigned to dimers) have higher AhR activity and MACvis. The negative correlation between cell toxicity and AhR activity suggests that the toxicity of smoldering WSA to cells is not mediated by the AhR. Both mass-normalized biological outcomes have a statistically significant dependence on the degree of combustion of the wood. In addition, our observations support the fact that the visible light absorption of WSA is at least partially due to charge transfer effects in aerosols, as previously suggested. Finally, MACvis has no correlation with toxicity or receptor signaling, suggesting that key chromophores in this work are not biologically active on the endpoints tested
Hand, foot and mouth disease in an immunocompetent adult due to Coxsackievirus A6
Hand, foot and mouth disease most commonly occurs in children less than 10 years old, but can occur in immunocompetent adults. We describe a 37-year-old immunocompetent man who presented with multiple painful papules and vesicles on his palms and feet together with vesicles inside the mouth. Real-time polymerase chain reaction revealed Coxsackievirus A6 in the vesicle fluid from the feet, throat swab, and rectal swab. Since the disease is highly contagious, to contain the infection it is prudent to recognise that hand, foot and mouth disease can occur in immunocompetent adults.published_or_final_versio
- …