5 research outputs found
Field Scanner Design for MUSTANG of the Green Bank Telescope
MUSTANG is a bolometer camera for the Green Bank Telescope (GBT) working at a
frequency of 90 GHz. The detector has a field of view of 40 arcseconds. To
cancel out random emission change from atmosphere and other sources, requires a
fast scanning reflecting system with a few arcminute ranges. In this paper, the
aberrations of an off-axis system are reviewed. The condition for an optimized
system is provided. In an optimized system, as additional image transfer
mirrors are introduced, new aberrations of the off-axis system may be
reintroduced, resulting in a limited field of view. In this paper, different
scanning mirror arrangements for the GBT system are analyzed through the ray
tracing analysis. These include using the subreflector as the scanning mirror,
chopping a flat mirror and transferring image with an ellipse mirror, and
chopping a flat mirror and transferring image with a pair of face-to-face
paraboloid mirrors. The system analysis shows that chopping a flat mirror and
using a well aligned pair of paraboloids can generate the required field of
view for the MUSTUNG detector system, while other systems all suffer from
larger off-axis aberrations added by the system modification. The spot diagrams
of the well aligned pair of paraboloids produced is only about one Airy disk
size within a scanning angle of about 3 arcmin.Comment: 7 pages, 9 figure
First Season QUIET Observations: Measurements of CMB Polarization Power Spectra at 43 GHz in the Multipole Range 25 <= ell <= 475
The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43GHz and
95GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to
measure the anisotropy in the polarization of the CMB. QUIET primarily targets
the B modes from primordial gravitational waves. The combination of these
frequencies gives sensitivity to foreground contributions from diffuse Galactic
synchrotron radiation. Between 2008 October and 2010 December, >10,000hours of
data were collected, first with the 19-element 43GHz array (3458hours) and then
with the 90-element 95GHz array. Each array observes the same four fields,
selected for low foregrounds, together covering ~1000deg^2. This paper reports
initial results from the 43GHz receiver which has an array sensitivity to CMB
fluctuations of 69uK sqrt(s). The data were extensively studied with a large
suite of null tests before the power spectra, determined with two independent
pipelines, were examined. Analysis choices, including data selection, were
modified until the null tests passed. Cross correlating maps with different
telescope pointings is used to eliminate a bias. This paper reports the EE, BB
and EB power spectra in the multipole range ell=25-475. With the exception of
the lowest multipole bin for one of the fields, where a polarized foreground,
consistent with Galactic synchrotron radiation, is detected with 3sigma
significance, the E-mode spectrum is consistent with the LCDM model, confirming
the only previous detection of the first acoustic peak. The B-mode spectrum is
consistent with zero, leading to a measurement of the tensor-to-scalar ratio of
r=0.35+1.06-0.87. The combination of a new time-stream double-demodulation
technique, Mizuguchi-Dragone optics, natural sky rotation, and frequent
boresight rotation leads to the lowest level of systematic contamination in the
B-mode power so far reported, below the level of r=0.1Comment: 19 pages, 14 figures, higher quality figures are available at
http://quiet.uchicago.edu/results/index.html; Fixed a typo and corrected
statistical error values used as a reference in Figure 14, showing our
systematic uncertainties (unchanged) vs. multipole; Revision to ApJ accepted
version, this paper should be cited as "QUIET Collaboration et al. (2011)
The QUIET Instrument
The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the
Cosmic Microwave Background, targeting the imprint of inflationary
gravitational waves at large angular scales (~ 1 degree). Between 2008 October
and 2010 December, two independent receiver arrays were deployed sequentially
on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal
planes use a highly compact design based on High Electron Mobility Transistors
(HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U,
and I in a single module. The 17-element Q-band polarimeter array, with a
central frequency of 43.1 GHz, has the best sensitivity (69 uK sqrt(s)) and the
lowest instrumental systematic errors ever achieved in this band, contributing
to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter
array has a sensitivity of 87 uK sqrt(s) at a central frequency of 94.5 GHz. It
has the lowest systematic errors to date, contributing at r < 0.01. The two
arrays together cover multipoles in the range l= 25-975. These are the largest
HEMT-based arrays deployed to date. This article describes the design,
calibration, performance of, and sources of systematic error for the
instrument
CMB Telescopes and Optical Systems
The cosmic microwave background radiation (CMB) is now firmly established as
a fundamental and essential probe of the geometry, constituents, and birth of
the Universe. The CMB is a potent observable because it can be measured with
precision and accuracy. Just as importantly, theoretical models of the Universe
can predict the characteristics of the CMB to high accuracy, and those
predictions can be directly compared to observations. There are multiple
aspects associated with making a precise measurement. In this review, we focus
on optical components for the instrumentation used to measure the CMB
polarization and temperature anisotropy. We begin with an overview of general
considerations for CMB observations and discuss common concepts used in the
community. We next consider a variety of alternatives available for a designer
of a CMB telescope. Our discussion is guided by the ground and balloon-based
instruments that have been implemented over the years. In the same vein, we
compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). CMB interferometers are presented briefly. We
conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and
Planck, to demonstrate a remarkable evolution in design, sensitivity,
resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1:
Telescopes and Instrumentatio