10 research outputs found

    Exciton doublet in the Mott-Hubbard LiCuVO4_4 insulator identified by spectral ellipsometry

    Full text link
    Spectroscopic ellipsometry was used to study the dielectric function of LiCuVO4_{4}, a compound comprised of chains of edge-sharing CuO4_4 plaquettes, in the spectral range (0.75 - 6.5) eV at temperatures (7-300) K. For photon polarization along the chains, the data reveal a weak but well-resolved two-peak structure centered at 2.15 and 2.95 eV whose spectral weight is strongly enhanced upon cooling near the magnetic ordering temperature. We identify these features as an exciton doublet in the Mott-Hubbard gap that emerges as a consequence of the Coulomb interaction between electrons on nearest and next-nearest neighbor sites along the chains. Our results and methodology can be used to address the role of the long-range Coulomb repulsion for compounds with doped copper-oxide chains and planes.Comment: 4 pages with 4 figures and EPAPS supplementary online material (3 pages with 4 figures), accepted in Phys. Rev. Let

    Anisotropic optical response of the mixed-valent Mott-Hubbard insulator NaCu2O2

    Full text link
    We report the results of a comprehensive spectroscopic ellipsometry study of NaCu2O2, a compound composed of chains of edge-sharing Cu2+O4 plaquettes and planes of Cu1+ ions in a O-Cu1+-O dumbbell configuration, in the spectral range 0.75-6.5 eV at temperatures 7 -300 K. The spectra of the dielectric function for light polarized parallel to the Cu1+ planes reveal a strong in-plane anisotropy of the interband excitations. Strong and sharp absorption bands peaked at 3.45 eV (3.7 eV) dominate the spectra for polarization along (perpendicular) to the Cu2+O2 chains. They are superimposed on flat and featureless plateaux above the absorption edges at 2.25 eV (2.5 eV). Based on density-functional calculations, the anomalous absorption peaks can be assigned to transitions between bands formed by Cu1+ 3dxz(dyz) and Cu2+ 3dxy orbitals, strongly hybridized with O pstates. The major contribution to the background response comes from transitions between Cu1+ 3dz2 and 4px(py) bands. This assignment accounts for the measured in-plane anisotropy. The dielectric response along the Cu2+O2 chains develops a weak two-peak structure centered at 2.1 and 2.65 eV upon cooling below 100 K, along with the appearance of spin correlations along the Cu2+O2 chains. These features bear a striking resemblance to those observed in the single-valent Cu2+O2 chain compound LiCuVO4, which were identified as an exciton doublet associated with transitions to the upper Hubbard band that emerges as a consequence of the long-range Coulomb interaction between electrons on neighboring Cu2+ sites along the chains. An analysis of the spectral weights of these features yields the parameters characterizing the on-site and long-range Coulomb interactions.Comment: 12 pages, 12 figure

    Signatures of Electronic Correlations in Optical Properties of LaFeAsO1x_{1-x}Fx_x

    Full text link
    Spectroscopic ellipsometry is used to determine the dielectric function of the superconducting LaFeAsO0.9_{0.9}F0.1_{0.1} (TcT_c = 27 K) and undoped LaFeAsO polycrystalline samples in the wide range 0.01-6.5 eV at temperatures 10 T\leq T \leq 350 K. The free charge carrier response in both samples is heavily damped with the effective carrier density as low as 0.040±\pm0.005 electrons per unit cell. The spectral weight transfer in the undoped LaFeAsO associated with opening of the pseudogap at about 0.65 eV is restricted at energies below 2 eV. The spectra of superconducting LaFeAsO0.9_{0.9}F0.1_{0.1} reveal a significant transfer of the spectral weight to a broad optical band above 4 eV with increasing temperature. Our data may imply that the electronic states near the Fermi surface are strongly renormalized due to electron-phonon and/or electron-electron interactions.Comment: 4 pages, 4 figures, units in Fig.2 adde

    Eliashberg approach to superconductivity-induced infrared anomalies in Ba0.68K0.32Fe2As2

    Get PDF
    We report the full complex dielectric function of high-purity Ba0.68K0.32Fe2As2\textrm{Ba}_{0.68}\textrm{K}_{0.32}\textrm{Fe}_2\textrm{As}_2 single crystals with Tc=38.5 KT_{\mathrm{c}}=38.5\ \textrm{K} determined by wide-band spectroscopic ellipsometry at temperatures 10T300 K10\leq T\leq300\ \textrm{K}. We discuss the microscopic origin of superconductivity-induced infrared optical anomalies in the framework of a multiband Eliashberg theory with two distinct superconducting gap energies $2\Delta_{\mathrm{A}}\approx6\ k_{\mathrm{B}}T_{\mathrm{c}}and and 2\Delta_{\mathrm{B}}\approx2.2\ k_{\mathrm{B}}T_{\mathrm{c}}.Theobservedunusualsuppressionoftheopticalconductivityinthesuperconductingstateatenergiesupto. The observed unusual suppression of the optical conductivity in the superconducting state at energies up to 14\ k_{\mathrm{B}}T_{\mathrm{c}}$ can be ascribed to spin-fluctuation--assisted processes in the clean limit of the strong-coupling regime.Comment: 4 pages, 4 figures; suppl. material: 3 pages, 2 figures, 1 interactive simulation (Fig. S3

    Doping-Dependent Raman Resonance in the Model High-Temperature Superconductor HgBa2CuO4+d

    Full text link
    We study the model high-temperature superconductor HgBa2CuO4+d with electronic Raman scattering and optical ellipsometry over a wide doping range. The resonant Raman condition which enhances the scattering cross section of "two-magnon" excitations is found to change strongly with doping, and it corresponds to a rearrangement of inter-band optical transitions in the 1-3 eV range seen by ellipsometry. This unexpected change of the resonance condition allows us to reconcile the apparent discrepancy between Raman and x-ray detection of magnetic fluctuations in superconducting cuprates. Intriguingly, the strongest variation occurs across the doping level where the antinodal superconducting gap reaches its maximum.Comment: 4 pages, 4 figures, contact authors for Supplemental Materia

    Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices

    Get PDF
    The competition between collective quantum phases in materials with strongly correlated electrons depends sensitively on the dimensionality of the electron system, which is difficult to control by standard solid-state chemistry. We have fabricated superlattices of the paramagnetic metal LaNiO3 and the wide-gap insulator LaAlO3 with atomically precise layer sequences. Using optical ellipsometry and low-energy muon spin rotation, superlattices with LaNiO3 as thin as two unit cells are shown to undergo a sequence of collective metalinsulator and antiferromagnetic transitions as a function of decreasing temperature, whereas samples with thicker LaNiO3 layers remain metallic and paramagnetic at all temperatures. Metal-oxide superlattices thus allow control of the dimensionality and collective phase behavior of correlated-electron systems
    corecore