147 research outputs found

    Fractional wave equation and damped waves

    Full text link
    In this paper, a fractional generalization of the wave equation that describes propagation of damped waves is considered. In contrast to the fractional diffusion-wave equation, the fractional wave equation contains fractional derivatives of the same order α, 1α2\alpha,\ 1\le \alpha \le 2 both in space and in time. We show that this feature is a decisive factor for inheriting some crucial characteristics of the wave equation like a constant propagation velocity of both the maximum of its fundamental solution and its gravity and mass centers. Moreover, the first, the second, and the Smith centrovelocities of the damped waves described by the fractional wave equation are constant and depend just on the equation order α\alpha. The fundamental solution of the fractional wave equation is determined and shown to be a spatial probability density function evolving in time that possesses finite moments up to the order α\alpha. To illustrate analytical findings, results of numerical calculations and numerous plots are presented.Comment: 21 pages, 10 figure

    Development of approaches to optimization technologies of hardening structural elements with stress concentrators by surface engineering methods

    Get PDF
    The problem of ensuring the required level of operational parameters of structures with the presence of stress concentrators is considered. The ways of controlling the contact strength by the formation of a given distribution of mechanical properties in the body are proposed. These approaches make it possible both to optimize the technologies of hardening parts and determine the causes of their failur

    Time-Fractional KdV Equation: Formulation and Solution using Variational Methods

    Full text link
    In this work, the semi-inverse method has been used to derive the Lagrangian of the Korteweg-de Vries (KdV) equation. Then, the time operator of the Lagrangian of the KdV equation has been transformed into fractional domain in terms of the left-Riemann-Liouville fractional differential operator. The variational of the functional of this Lagrangian leads neatly to Euler-Lagrange equation. Via Agrawal's method, one can easily derive the time-fractional KdV equation from this Euler-Lagrange equation. Remarkably, the time-fractional term in the resulting KdV equation is obtained in Riesz fractional derivative in a direct manner. As a second step, the derived time-fractional KdV equation is solved using He's variational-iteration method. The calculations are carried out using initial condition depends on the nonlinear and dispersion coefficients of the KdV equation. We remark that more pronounced effects and deeper insight into the formation and properties of the resulting solitary wave by additionally considering the fractional order derivative beside the nonlinearity and dispersion terms.Comment: The paper has been rewritten, 12 pages, 3 figure

    Approximate Solutions to Fractional Subdiffusion Equations: The heat-balance integral method

    Full text link
    The work presents integral solutions of the fractional subdiffusion equation by an integral method, as an alternative approach to the solutions employing hypergeometric functions. The integral solution suggests a preliminary defined profile with unknown coefficients and the concept of penetration (boundary layer). The prescribed profile satisfies the boundary conditions imposed by the boundary layer that allows its coefficients to be expressed through its depth as unique parameter. The integral approach to the fractional subdiffusion equation suggests a replacement of the real distribution function by the approximate profile. The solution was performed with Riemann -Liouville time-fractional derivative since the integral approach avoids the definition of the initial value of the time-derivative required by the Laplace transformed equations and leading to a transition to Caputo derivatives. The method is demonstrated by solutions to two simple fractional subdiffusion equations (Dirichlet problems): 1) Time-Fractional Diffusion Equation, and 2) Time-Fractional Drift Equation, both of them having fundamental solutions expressed through the M-Write function. The solutions demonstrate some basic issues of the suggested integral approach, among them: a) Choice of the profile, b) Integration problem emerging when the distribution (profile) is replaced by a prescribed one with unknown coefficients; c) Optimization of the profile in view to minimize the average error of approximations; d) Numerical results allowing comparisons to the known solutions expressed to the M-Write function and error estimations.Comment: 15 pages, 7 figures, 3 table

    First and second fundamental solutions of the time-fractional telegraph equation with Laplace or Dirac operators

    Get PDF
    In this work, we obtain the first and second fundamental solutions (FS) of the multidimensional time-fractional equation with Laplace or Dirac operators, where the two time-fractional derivatives of orders α ∈]0, 1] and β ∈]1, 2] are in the Caputo sense. We obtain representations of the FS in terms of Hankel transform, double Mellin- Barnes integrals, and H-functions of two variables. As an application, the FS are used to solve Cauchy problems of Laplace and Dirac type
    corecore