22 research outputs found

    Limits on Kaluza-Klein Models from COBE Results

    Get PDF
    The large-angular-scale anisotropy of the cosmic microwave background radiation in multidimensional cosmological models (Kaluza-Klein models) is studied. Limits on parameters of the models imposed by the experimental data are obtained. It is shown that in principle there is a room for Kaluza-Klein models as possible candidates for the description of the Early Universe. However, the obtained limits are very restrictive and none of the concrete models, analyzed in the article, satisfy them.Comment: 9 pages, Latex, one figure available on request at the following adress: [email protected]

    Model building by coset space dimensional reduction in ten-dimensions with direct product gauge symmetry

    Get PDF
    We investigate ten-dimensional gauge theories whose extra six-dimensional space is a compact coset space, S/RS/R, and gauge group is a direct product of two Lie groups. We list up candidates of the gauge group and embeddings of RR into them. After dimensional reduction of the coset space,we find fermion and scalar representations of GGUT×U(1)G_{\mathrm{GUT}} \times U(1) with GGUT=SU(5),SO(10)G_{\mathrm{GUT}}=SU(5), SO(10) and E6E_6 which accomodate all of the standard model particles. We also discuss possibilities to generate distinct Yukawa couplings among the generations using representations with a different dimension for GGUT=SO(10)G_{\mathrm{GUT}}=SO(10) and E6E_6 models.Comment: 14 pages; added local report number, added refferenc

    Decoupling of Heavy Kaluza-Klein Modes In Models With Five-Dimensional Scalar Fields

    Full text link
    We investigate the decoupling of heavy Kaluza-Klein modes in ϕ4\phi^{4} theory and scalar QED with space-time topology R3,1×S1\mathbb{R}^{3,1} \times S^{1}. We calculate the effective action due to integrating out heavy KK modes. We construct generalized RGE's for the couplings with respect to the compactification scale MM. With the solutions to the RGE's we find the MM-scale dependence of the effective theory due to higher dimensional quantum effects. We find that the heavy modes decouple in ϕ4\phi^{4} theory, but do not decouple in scalar QED. This is due to the zero mode of the 5-th component A5A_{5} of the 5-d gauge field. Because A5A_{5} is a scalar under 4-d Lorentz transformations, there is no gauge symmetry protecting it from getting mass and A54A_{5}^{4} interaction terms after loop corrections. In light of these unpleasant features, we explore S1/Z2S^{1}/\mathbb{Z}_{2} compactifications, which eliminate A5A_{5}, allowing for the heavy modes to decouple at low energies. We also explore the possibility of decoupling by including higher dimensional operators. It is found that this is possible, but a high degree of fine tuning is required.Comment: 9 pages, no figures; sign error on equations 20, 36, 37; Added additional reference

    Scalar Kaluza-Klein modes in a multiply warped braneworld

    Full text link
    The Kaluza-Klein (KK) modes of a massive scalar field on a 3-brane embedded in six dimensional multiply warped spacetime are determined. Due to the presence of warping along both the extra dimensions the KK mass spectrum splits into two closely spaced branches which is a distinct feature of this model compared to the five dimensional Randall-Sundrum model. This new cluster of the KK mode spectrum is expected to have interesting phenomenological implications for the upcoming collider experiments. Such a scenario may also be extended for even larger number of orbifolded extra dimensions.Comment: 10 pages, Revte

    Compactification, Vacuum Energy and Quintessence

    Get PDF
    We study the possibility that the vacuum energy density of scalar and internal-space gauge fields arising from the process of dimensional reduction of higher dimensional gravity theories plays the role of quintessence. We show that, for the multidimensional Einstein-Yang-Mills system compactified on a R×S3×SdR \times S^3 \times S^d topology, there are classically stable solutions such that the observed accelerated expansion of the Universe at present can be accounted for without upsetting structure formation scenarios or violating observational bounds on the vacuum energy density.Comment: 15 pages, Latex, Third Award in 1999 Essay Competition of the Gravity Research Foundatio

    Is the String Coupling Constant invariant under T-duality?

    Get PDF
    It is well known that under T-duality the sigma model dilaton (which is normally thought to be related to the string coupling constant through the simple formula Îș=exp\kappa = exp ), undergoes an additive shift. On the other hand, Kugo and Zwiebach, using a simplified form of string field theory, claim that the string coupling constant does not change under the T-duality. Obviously, what seems to happen is that two different coupling constants, associated to different dilatons, are used. In this contribution we shall try to clarify this, and related issues.Comment: LaTeX, 13 pag. Contributions to Santa Margherita and S. Petersburg meeting

    Matter-gravity interaction in a multiply warped braneworld,

    Full text link
    The role of a bulk graviton in predicting the signature of extra dimensions through collider-based experiments is explored in the context of a multiply warped spacetime. In particular it is shown that in a doubly warped braneworld model, the presence of the sixth dimension, results in enhanced concentration of graviton Kaluza Klein (KK) modes compared to that obtained in the usual 5-dimensional Randall-Sundrum model. Also, the couplings of these massive graviton KK modes with the matter fields on the visible brane turn out to be appreciably larger than that in the corresponding 5- dimensional model. The significance of these results are discussed in the context of KK graviton search at the Large Hadron Collider (LHC).Comment: 13 pages, 2 table

    Inflation in Multidimensional Quantum Cosmology

    Get PDF
    We extend to multidimensional cosmology Vilenkin's prescription of tunnelling from nothing for the quantum origin of the observable Universe. Our model consists of a D+4D+4-dimensional spacetime of topology R×S3×SD{\cal R}\times {\cal S}^3 \times{\cal S}^D, with a scalar field (``chaotic inflaton'') for the matter component. Einstein gravity and Casimir compactification are assumed. The resulting minisuperspace is 3--dimensional. Patchwise we find an approximate analytic solution of the Wheeler--DeWitt equation through which we discuss the tunnelling picture and the probability of nucleation of the classical Universe with compactifying extra dimensions. Our conclusion is that the most likely initial conditions, although they do not lead to the compactification of the internal space, still yield (power-law) inflation for the outer space. The scenario is physically acceptable because the inner space growth is limited to ∌1011\sim 10^{11} in 100 e-foldings of inflation, starting from the Planck scale.Comment: RevTeX, 30 pages, 4 figures available via fax on request to [email protected], submitted to Phys. Rev.

    Scalar kinks and fermion localisation in warped spacetimes

    Full text link
    Scalar kinks propagating along the bulk in warped spacetimes provide a thick brane realisation of the braneworld. We consider here, a class of such exact solutions of the full Einstein-scalar system with a sine-Gordon potential and a negative cosmological constant. In the background of the kink and the corresponding warped geometry, we discuss the issue of localisation of spin half fermions (with emphasis on massive ones) on the brane in the presence of different types of kink-fermion Yukawa couplings. We analyse the possibility of quasi-bound states for large values of the Yukawa coupling parameter ÎłF\gamma_F (with Îœ\nu, the warp factor parameter kept fixed) using appropriate, recently developed, approximation methods. In particular, the spectrum of the low--lying states and their lifetimes are obtained, with the latter being exponentially enhanced for large ÎœÎłF\nu \gamma_F. Our results indicate quantitatively, within this model, that it is possible to tune the nature of warping and the strength and form of the Yukawa interaction to obtain trapped massive fermion states on the brane, which, however, do have a finite (but very small) probability of escaping into the bulk.Comment: 22 pages, 4 figures, RevTex

    Finite SU(N)^k Unification

    Full text link
    We consider N=1 supersymmetric gauge theories based on the group SU(N)_1 x SU(N)_2 x ... x SU(N)_k with matter content (N,N*,1,...,1) + (1,N,N*,...,1) + >... + (N*,1,1,...,N) as candidates for the unification symmetry of all particles. In particular we examine to which extent such theories can become finite and we find that a necessary condition is that there should be exactly three families. We discuss further some phenomenological issues related to the cases (N,k) = (3,3), (3,4), and (4,3), in an attempt to choose those theories that can become also realistic. Thus we are naturally led to consider the SU(3)^3 model which we first promote to an all-loop finite theory and then we study its additional predictions concerning the top quark mass, Higgs mass and supersymmetric spectrum.Comment: 15 page
    corecore