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Abstract

The large-angular-scale anisotropy of the cosmic microwave background radi-
ation in multidimensional cosmological models (Kaluza-Klein models) is studied.
Limits on parameters of the models imposed by the experimental data are obtained.
It is shown that in principle there is a room for Kaluza-Klein models as possible
candidates for the description of the Early Universe. However, the obtained limits
are very restrictive and none of the concrete models, analyzed in the article, satisfy
them.
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It was shown in the literature [1] that a certain (although quite narrow) class of four-
dimensional inflationary scenarios agrees with the observational data [2] on the anisotropy
of the cosmic microwave background radiation. However, many of the models which
provide mechanisms of the inflationary expansion of the three-dimensional spatial part of
the Universe arise from string or supergravity models (see, for example, [3]) formulated
in the spacetime with more than four dimensions. As it is known the dynamics of the
multidimensional Universe differs significantly from that of the four-dimensional one at the
Early stage of the evolution, when the extra dimensions could have an important role to
play. In particular, this is reflected in the spectrum of gravitational waves. The reason is
basically due to the fact that, apparently, the scale factor of the space of extra dimensions
was not static and was comparable to the scale of the three-dimensional spatial part at
that epoch. This suggests that it is important to derive constraints on the models of the
Early Universe within the framework of multidimensional (Kaluza-Klein) cosmology.

Our discussion in this article will be rather general in order to include a wider class of
models, not just those which stem from superstring or supergravity theories. We expect
that recent discovery of the angular variation in the temperature of the cosmic microwave
background radiation (CMBR) by the Cosmic Background Explorer (COBE) will defi-
nitely shed light on the origin and nature of long-wavelength cosmological perturbations
and in this way may give some evidence pro or contra the Kaluza-Klein hypothesis. In
this letter we study gravitational waves generated quantum mechanically and calculate
the temperature variation of the CMBR. Then we combine the result of this calculation,
results of experimental observations, including the COBE data [2], and requirements of
self-consistency of the multi-dimensional approach to obtain limits on parameters describ-
ing our cosmological scenario.

We consider Kaluza-Klein cosmological models with the spacetime given by the direct
product R×M3

1×M
d
2. The manifold R×M3

1 represents our four-dimensional Universe
and we assume it to be of the Friedman - Lemâıtre - Robertson - Walker type with
flat space hypersurfaces. The d-dimensional manifold Md

2 represents the space of extra
dimensions, often called internal space, and it is assumed to be a compact symmetric
homogeneous space. We restrict our considerations to the metrics of the form:

g = −dt⊗ dt+ a2(t)g̃ + b2(t)ĝ,

where g̃ is the three-dimensional metric onM3
1 and ĝ is the d-dimensional metric on the

internal space Md
2. We consider physical gravitational waves, i.e. gravitational waves

on M3
1. In our analysis we assume that the only spatial dependence is given by the

eigentensors of the Laplacian on M3
1 labelled by the wavenumber n [4], i.e. we retain

only the lowest (zero) mode onMd
2. In terms of the conformal time η the time-dependent

amplitude of the wave can be expressed as νn(η) ≡ µn(η)/f(η), where f(η) ≡
√
a2(η)bd(η).

Then µ(η) obeys the following equation:

µ′′n(η) + (n2 −
f ′′(η)

f(η)
)µn(η) = 0. (1)

This equation was derived and studied first in the four-dimensional cosmology, see, for
example, [5]. In the multidimensional case Eq. (1) was considered in Refs. [4, 6, 7].

In the quantum-mechanical treatment [8] (see also [5]) the perturbation hij becomes
an operator. If we require the amount of energy in each mode to be h̄ω/2, its general
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expression is the following:

hij(η, x̃
k) = 4

√
π
lPlb

d/2
KK

f(η)

1

(2π)3/2

∫ +∞

−∞
d3n

s=2∑
s=1

psij(n)
1
√

2n
(csn(η)ein·x̃ + cs†n (η)e−in·x̃), (2)

where x̃k are the coordinates on M3
1. We used the fact that the multidimensional grav-

itational constant G(4+d) is related to the four-dimensional one G(4) as G(4+d) = G(4)Vd
with the volume of the internal space Vd evaluated for b = bKK , the present day value of
the scale factor of the internal space. The polarization tensor psij(n) satisfies the relations:

psijn
j = 0, psijδ

ij = 0, psijp
s′ij = 2δss

′
and psij(−n) = psij(n). The time evolution of the

operator hij(η, x̃k) is determined by the time evolution of the operators csn and cs†n which
obey the Heisenberg equations:

dcn
dη

= −i[cn, H],
dc†n
dη

= −i[c†n, H].

The Hamiltonian H, providing a description in terms of travelling waves, is given by:

H = nc†ncn + nc†−nc−n + 2σ(η)c†nc
†
−n + 2σ∗(η)cnc−n, (3)

where σ(η) ≡ if ′/(2f). For d = 0 the expressions of Ref. [9] are recovered. In the
multidimensional case there is the second pump field b(η) in addition to a(η), which also
appears in the four-dimensional case, and the production of gravitons will be different.
The form of the Hamiltonian (3) explicitly demonstrates that, while the Universe expands,
the initial vacuum state evolves into a squeezed vacuum state with characteristic statistical
properties as discussed in Ref. [10]. The Heisenberg equations are resolved with the help
of the standard Bogoliubov transformations: cn(η) = uncn(η0) + vnc

†
n(η0) and similar one

for c†n(η). It follows that then the function µn(η) ≡ un(η) + v∗n(η) obeys the classical
equation (1).

In order to derive bounds on parameters of cosmological models from COBE obser-
vational data we calculate the angular correlation function for the temperature variation
of the CMBR caused by the cosmological perturbations (Sachs-Wolfe effect [11]). This
function depends only on the angle δ between the unit vectors e1 and e2 pointing out in
the directions of observation and can be expanded in terms of the Legendre polynomials
Pl as follows:

< 0|
δT

T
(ek1)

δT

T
(ek2)|0 >= l2Pl

∞∑
l=2

KlPl(cos δ), (4)

where the multipole distributions Kl are equal to

Kl = (2l + 1)l(l + 1)[l(l + 1)− 2]bdKK

∫ ∞
0

dnn2
∣∣∣∫ ηR−ηE

0
dw

Jl+1/2(nw)

(nw)5/2
gn(ηR −w)

∣∣∣2. (5)

Here ηE(ηR) is the time at which photons of the CMBR were emitted (received). The
factors lPl and bKK come from the normalization of the field operator (2). The function
gn(ηR − w) is defined by the formula: gn(ηR − w) ≡ [µn/(

√
2nf)]′. These formulas will

be used for the matter-dominated epoch, thus f will be taken equal to f = ab
d/2
KK and the

factor bKK cancels out in the formula (5). Contributions due to extra dimensions enter
through the function µ(η). The expressions (4), (5) for the four-dimensional case were
obtained in [9, 12].
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In this article we consider the evolution of the Universe which includes standard ra-
diation dominated and matter dominated stages and an epoch during which the three-
dimensional space M3

1 experiences inflationary expansion. We choose the following sce-
nario for the behaviour of the scale factors:

1) Inflationary stage (I-stage): η < η1 < 0

a(η) = l0|η|
1+β, b(η) = b0|η|

γ. (6)

2) Transition stage: η1 < η < η2

a(η) = l0ae(η − ηe), b(η) =

{
B cosh[nt(η − ηt)]

ael0(η − ηe)

}2/d

.

3) Radiation-dominated stage (RD-stage): η2 < η < η3

a(η) = l0ae(η − ηe), b(η) = bKK .

4) Matter-dominated stage (MD-stage): η > η3

a(η) = l0am(η − ηm)2, b(η) = bKK .

In order to assure the continuity of the scale factor of extra dimensions and its first
derivative between the I-stage and the RD-stage, we have added a period, called transition
period, at which b(η) interpolates smoothly between its value at the end of inflation and
bKK . The corresponding behaviour of the scale factors at the I-stage in terms of the
synchronous time is a(t) ∼ |t|(1+β)/(2+β), b(t) ∼ |t|γ/(2+β). All models with 1 + β < 0 (η
must be negative in this case) describe inflationary expansion of the three-dimensional
part of the Universe. It can be shown that the case β = −2 corresponds to the de
Sitter expansion. The cases β < −2 correspond to power-law inflation, i.e. a(t) ∼ tm,
m > 1, and the cases −2 < β < −1 correspond to super-inflation of the type a(t) ∼ |t|m,
m < −1, t < 0. The function b(η) is taken to be constant for η > η2. This agrees with
strong bounds on the time variation of the scale factor of extra dimensions obtained in
[13] at the RD- and MD-stages. Its behaviour at the transition stage mimics a period of
slowing down of the evolution of b(η) in the process of compactification that appears in
many Kaluza-Klein cosmological models (see, for example, [14]). At the moment we do
not impose any restrictions on the parameter γ characterizing b(η) at the I-stage. Our
scenario is rather general since in most of the known models of Kaluza-Klein cosmology
[15]-[18] the behaviour of the scale factors at the inflationary-compactification stage is of
the same type as the one described by Eqs. (6).

To calculate the angular variation of the temperature of the CMBR we need to solve
Eq. (1). The initial conditions on the wave amplitude, corresponding to the vacuum
spectrum of the perturbations characterized by ”a half of the quantum” in each mode,
are the following: µ(η0) = 1, µ′(η0) = −in, where η0 < 0 is such that |η0| � |η1| [5]. some
η0 << η1 < 0. Then the exact solution of Eq. (1) is equal to

1) I-stage:

µ(η) = (nη)1/2AH
(2)

N+1
2

(nη),

where H(2)
ν (z) is the Hankel function of the second kind, N = β + (γd)/2 and A =

−i
√
π/2 exp[i(nη0 − πN/2)].
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2) Transition stage:
µ(η) = B1e

−iw(η−ηt) +B2e
iw(η−ηt),

where w2 = n2 − n2
t . If n > nt, µ(η) is an oscillatory function whereas if n < nt, µ is the

sum of the exponentially growing and exponentially decreasing solutions.
3) RD-stage:

µ(η) = C1e
−in(η−ηe) + C2e

in(η−ηe).

4) MD-stage:

µ(η) =

√
πz

2

(
D1J 3

2
(z) +D2J−3

2
(z)
)
, (7)

where z ≡ n(η−ηm). The coefficientsBi, Ci and Di (i = 1, 2) are determined by matching
the solution and its first derivative.

To set the scale for η it is convenient to choose ηR− ηm = 1. All realistic cosmological
models should give a(ηE)/a(ηR) ≈ 10−3, a(η3)/a(ηR) ≈ 10−4 and a(η1)/a(ηR) = k, where
3 ·10−32 < k < 3 ·10−12. The lower bound on k corresponds to the case when the radiation
dominated expansion of the three-dimensional part of the Universe starts at the Planckian
energy densities, whereas the upper one corresponds to the case when this process starts
at the nuclear energy densities. From the continuity conditions on the scale factors a(η)
and b(η) and its first derivatives a′(η) and b′(η) we obtain the following expressions for
the parameters of the scenario in terms of β and k:

η1 = 50k(1 + β),

η3 = 50kβ + 0.5 · 10−2, ηe = 50kβ, ηm = −0.5 · 10−2 + 50kβ,

ae = −(1 + β)(50k|1 + β|)β, am = 50|1 + β|(50k|1 + β|)β.

The characteristic scale l0 in Eq. (6) is given by the relation

lPl

l0
= 25

(
lPl

lH

)
(50k)β |1 + β|(1+β), (8)

where lH ≡ a2(ηR)/a′(ηR) is the present day Hubble radius. We take it to be equal to
lH = 1061lPl.

It turns out that in order to get relations on the parameters η2, ηt, B and nt one has
to solve the transcendental equation

tanh
(√

r2(x2 − p2) + 1− x+ arg tanh
p

x

)
=

1√
r2(x2 − p2) + 1

, (9)

where p = (N + 1)/(β + 1) and r = (b(η1)/bKK)d/2. This equation arises from the
continuity conditions on b(η) and b′(η). If x(r, p) is a solution of Eq. (9) for given r and
p we get

nt =
1 + β

η1
x(r, p) =

x(r, p)

50k
, B = l0b

d/2
0

√
x2(r, p)− p2

x(r, p)
|η1|

N+1, (10)

η2 − η1 = 50k

√
r2(x2(r, p)− p2) + 1− x(r, p)

x(r, p)
, η1 − ηt =

1

nt
arg tanh

p

x(r, p)
. (11)
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From Eqs. (10) and (11) we see that physically acceptable solutions must satisfy x(r, p) >
|p|. It can be shown that such solutions exist for r > 1 and p < pcrit(r) < 1/r only. For
example, for r = 2 pcrit = 0.22 and if we choose p = 0.1, the solution is x = 0.373. From
eq. (11) it follows that nt(η2 − η1) = 0.907 then.

Thus, the consistency of the scenario requires p < 1. This means that γ > 0 and the
scale factor of the internal space decreases at the I-stage. The condition r > 1 means that
this scale factor continues to decrease at the transition stage. Since we assume that the
classical evolution of the multidimensional Universe may start at some value of b(η0) close
to the Planck length, it is reasonable to limit our consideration to not very big values of
r, otherwise bKK appears to be much smaller than lPl. We restrict ourselves to the range
1 < r < 10.

To impose further restrictions let us consider a condition on the size of the space of
extra dimensions after the end of the compactification process. It is easy to show that

lPl

bKK
=

(
l0

b0

)
r2/d

4
S, with S = 100

(
lPl

lH

)
|1 + β|1+β−γ(50k)β−γ . (12)

We make a natural supposition that at the beginning of the inflation all space dimensions
in the early Universe were of the same order. In this article for the sake of simplicity we
take l0 = b0.

The only experimental bound on the size of bKK comes from the fact that no effects
of extra dimensions are observed in high energy particle experiments. This, apparently,
tells us that h̄c/bKK > (1÷ 10) TeV. On the other hand the classical description of the
background dynamics can be trusted only if bKK is not much smaller than lPl. These
arguments imply that S in eq. (12) should belong to the interval 10−16 < S < 1 that
gives certain restrictions on β and γ. However, we found that it is more convenient to
analyze these restrictions together with the bounds coming from the COBE experiment.
We are going to derive these bounds right now.

It can be shown that the main contribution to the multipole distributions Kl of the
correlation function for the temperature variation of the CMBR , Eqs. (5), is given by
long waves, namely by the waves with the wavelength equal or larger than the present
day Hubble radius. Such waves have wavenumbers n� nH = 4π. The approximate form
of the solution for these wavenumbers is the following:

µn(η) ≈ −ieinη050
Ψ(N)

r
(1 + β)1+N(50k)Nn1+N (η − ηm)2, (13)

where Ψ(N) ≡
√
π/2 exp(iπN/2)[cos(Nπ)2N+1/2Γ(N + 3/2)]−1.

It can be shown that for the separation angle δ = 0 the variance of δT/T can be
approximately characterized by

< 0|
δT

T
(ek)

δT

T
(ek)|0 >∼ 10−5h2

H ,

where hH is the characteristic spectral component defined by h(n; η) = lPln|µ(η)|/a(η)
and evaluated at n = nH , η = ηR (see the discussion in Ref. [10]). Using Eqs. (8) and
(13) we obtain that

h(n; ηR) = 25

(
lPl

lH

)
|Ψ(N)|

r
|1 + β|(1+N)(50k)Nn2+N , (14)

5



In this expression the limit of the four-dimensional case is achieved by putting d = 0. Then
N = β, r = 1 and the analogous formula of ref. [1] is recovered. COBE experimental
results give (δT/T )exp ≈ 6 · 10−6 [2], consequently hH must be of the order 10−4.

Thus, we have two conditions to be satisfied:

hH = 10−4 and 10−16 ≤ S ≤ 1, (15)

where S and h(nH) are given by Eqs. (12) and (14) respectively. Resolving these condi-
tions we obtain

N =
53

3 + lg(k/3)
, (16)

d+ 2

2
γ = −

71 + 6 lg(k/3)

(3 + lg(k/3))(2 + lg(k/3))
−

lgS

2 + lg(k/3)
. (17)

When k/3 varies within the interval 10−32 < k/3 < 10−12, N changes within the bounds
−5.9 < N < −1.8, which essentially coincide with the bounds on β coming from the
analogous condition in the four-dimensional scenario [1]. In addition, one should check
that the mean square value of the field is finite in the limit of small wave numbers n.
This gives additional restriction N > −2, see [1]. From Eq. (17) we conclude that upper
bound on this parameter is given by (d+ 2)γ/2 < 0.14. Recall that for the scenario to be
consistent γ must be positive.

The region of allowed values of β and γ for d = 6 is presented in Fig. 1. For
other d the shape of the region remains the same, however its area decreases when d
grows. The consistent values of S within our scenario, i.e. those which admit positive
values of γ, belong to the interval 10−4 ≤ S ≤ 1. We would like to emphasize that
S = 10−4 corresponds to h̄c/bKK = 1015 GeV, which is approximately the scale of the
Grand Unification.

We are unaware of any model of Kaluza-Klein cosmology which agrees with the limits
on β and γ obtained above. For example, among the models corresponding to our scenario,
one finds that β = −5/4, γ = 1/4 for d = 6 in the perfect-fluid-dominated model [16],
β = −1.26, γ = 0.22 in the D = 4 + d = 11 supergravity with toroidal compactification
[17], β = −14/11, γ = 1/11 for d = 22 in the model of string-driven inflation [18]. It
is easy to check that none of these models satisfy the bounds. Results of more complete
analysis of Kaluza-Klein models will be presented elsewhere.

We would like to mention that using the exact solution for µ(η) and the formula (5)
we can compute the multipole distributions Kl contributing to the angular correlation
function, Eq. (4). However, it can be shown that the ratios Kl/K2 are the same as in the
four-dimensional case considered in [1] provided we replace β with N . Therefore, it seems
that multidimensional cosmological models satisfying the first condition in Eq. (15) also
give the values of Kl which roughly agree with the experimental data.

The transcendental equation (9) requires γ to be positive, that means that the size b
of the internal space decreases at the I-stage. Therefore, though the effect of the tran-
sition period on the amplitude µ(η) is small, we see that the range of the variation for
the parameter γ, allowed by the background model, depends on the details of the tran-
scendental equation. It is quite possible that for other types of the behaviour of the scale
factors during the transition period the case γ < 0 is permitted. Our analysis must be
re-examined for that case. We will consider this possibility in a future publication.
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In this article we considered the contribution to the angular variation in the tempera-
ture of the CMBR coming from the gravitational wave perturbations generated quantum-
mechanically as a result of parametric interaction of the perturbations with strong variable
background gravitational fields in the Early Universe. Due to universal character of this
mechanism such wave perturbations have been generated inevitably, hence firmness of
the limits (16) and (17) on β and γ, which are the main results of our paper. Contribu-
tions due to perturbations of other types (density and rotational perturbations, non-zero
modes on Md

2) in the Kaluza-Klein cosmology should be analyzed as well, however they
are beyond the scope of the present article.

The limits (16) and (17) (and their graphical representation in Fig. 1) show that the
conditions of consistency and the recent data from the COBE experiment leave a room
for multidimensional cosmological models as candidates for the description of the Early
Universe. However, the limits are rather restrictive and we did not find any concrete
model satisfying them. Taking into account further restrictions imposed, for example, by
the pulsar-timing data or by the future LIGO experiment will allow to make the limits
on multidimensional models more restrictive thus questioning the very validity of the
Kaluza-Klein hypothesis. We would like to mention that the spectral energy density of
the gravitational waves and some observational bounds on multidimensional cosmological
models were studied in Ref. [7].
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Figure caption

Fig. 1 The region of values of the parameters β and γ given by the equations (16) and
(17) for d = 6. The four presented curves correspond to various values of y = lgS.
The dashed straight line is given by N = −2. The hatched region is the region of
values of β and γ allowed by the observational data and the consistency conditions
discussed in the article.
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