102 research outputs found

    Observed Spectral Invariant Behavior of Zenith Radiance in the Transition Zone Between Cloud-Free and Cloudy Regions

    Get PDF
    The Atmospheric Radiation Measurement Program's (ARM) new Shortwave Spectrometer (SWS) looks straight up and measures zenith radiance at 418 wavelengths between 350 and 2200 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A surprising spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free atmosphere. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is found to be a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. This new finding may help us to better understand and quantify such physical phenomena as humidification of aerosols in the relatively moist cloud environment and evaporation and activation of cloud droplets

    Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari

    Get PDF
    We evaluate the operational MODIS Leaf Area Index (LAI) product using field-sampled data collected at five sites in southern Africa in March 2000. One site (Mongu, Zambia) was sampled monthly throughout the year. All sites were along the International Geosphere Biosphere Programme’s (IGBP) Kalahari Transect, which features progressively lower annual precipitation, and hence, lower vegetation productivity, from north to south. The soils are consistently sandy. At each site, we sampled the vegetation overstory along three 750-m transects using the Tracing Radiation and Architecture in Canopies (TRAC) instrument. The resulting plant area index values were adjusted with ancillary stem area data to estimate LAI. Despite some instrument characterization and production issues in the first year of MODIS operations, our results suggest the first-year MODIS LAI algorithm correctly accommodates structural and phenological variability in semiarid woodlands and savannas, and is accurate to within the uncertainty of the validation approach used here. Limitations of this study and its conclusions are also discussed

    Early spatial and temporal validation of MODIS LAI product in the Southern Africa Kalahari

    Get PDF
    We evaluate the operational MODIS Leaf Area Index (LAI) product using field-sampled data collected at five sites in southern Africa in March 2000. One site (Mongu, Zambia) was sampled monthly throughout the year. All sites were along the International Geosphere Biosphere Programme’s (IGBP) Kalahari Transect, which features progressively lower annual precipitation, and hence, lower vegetation productivity, from north to south. The soils are consistently sandy. At each site, we sampled the vegetation overstory along three 750-m transects using the Tracing Radiation and Architecture in Canopies (TRAC) instrument. The resulting plant area index values were adjusted with ancillary stem area data to estimate LAI. Despite some instrument characterization and production issues in the first year of MODIS operations, our results suggest the first-year MODIS LAI algorithm correctly accommodates structural and phenological variability in semiarid woodlands and savannas, and is accurate to within the uncertainty of the validation approach used here. Limitations of this study and its conclusions are also discussed

    Sensor-independent LAI/FPAR CDR: reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022

    Get PDF
    Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) are critical biophysical parameters for the characterization of terrestrial ecosystems. Long-term global LAI/FPAR products, such as the moderate resolution imaging spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS), provide the fundamental dataset for accessing vegetation dynamics and studying climate change. However, existing global LAI/FPAR products suffer from several limitations, including spatial–temporal inconsistencies and accuracy issues. Considering these limitations, this study develops a sensor-independent (SI) LAI/FPAR climate data record (CDR) based on Terra-MODIS/Aqua-MODIS/VIIRS LAI/FPAR standard products. The SI LAI/FPAR CDR covers the period from 2000 to 2022, at spatial resolutions of 500 m/5 km/0.05∘, 8 d/bimonthly temporal frequencies and available in sinusoidal and WGS1984 projections. The methodology includes (i) comprehensive analyses of sensor-specific quality assessment variables to select high-quality retrievals, (ii) application of the spatial–temporal tensor (ST-tensor) completion model to extrapolate LAI and FPAR beyond areas with high-quality retrievals, (iii) generation of SI LAI/FPAR CDR in various projections and various spatial and temporal resolutions, and (iv) evaluation of the CDR by direct comparisons with ground data and indirectly through reproducing results of LAI/FPAR trends documented in the literature. This paper provides a comprehensive analysis of each step involved in the generation of the SI LAI/FPAR CDR, as well as evaluation of the ST-tensor completion model. Comparisons of SI LAI (FPAR) CDR with ground truth data suggest an RMSE of 0.84 LAI (0.15 FPAR) units with R2 of 0.72 (0.79), which outperform the standard Terra/Aqua/VIIRS LAI (FPAR) products. The SI LAI/FPAR CDR is characterized by a low time series stability (TSS) value, suggesting a more stable and less noisy dataset than sensor-dependent counterparts. Furthermore, the mean absolute error (MAE) of the CDR is also lower, suggesting that SI LAI/FPAR CDR is comparable in accuracy to high-quality retrievals. LAI/FPAR trend analyses based on the SI LAI/FPAR CDR agree with previous studies, which indirectly provides enhanced capabilities to utilize this CDR for studying vegetation dynamics and climate change. Overall, the integration of multiple satellite data sources and the use of advanced gap filling modeling techniques improve the accuracy of the SI LAI/FPAR CDR, ensuring the reliability of long-term vegetation studies, global carbon cycle modeling, and land policy development for informed decision-making and sustainable environmental management. The SI LAI/FPAR CDR is open access and available under a Creative Commons Attribution 4.0 License at https://doi.org/10.5281/zenodo.8076540 (Pu et al., 2023a).</p
    • …
    corecore