49 research outputs found

    Natural images from the birthplace of the human eye

    Get PDF
    Here we introduce a database of calibrated natural images publicly available through an easy-to-use web interface. Using a Nikon D70 digital SLR camera, we acquired about 5000 six-megapixel images of Okavango Delta of Botswana, a tropical savanna habitat similar to where the human eye is thought to have evolved. Some sequences of images were captured unsystematically while following a baboon troop, while others were designed to vary a single parameter such as aperture, object distance, time of day or position on the horizon. Images are available in the raw RGB format and in grayscale. Images are also available in units relevant to the physiology of human cone photoreceptors, where pixel values represent the expected number of photoisomerizations per second for cones sensitive to long (L), medium (M) and short (S) wavelengths. This database is distributed under a Creative Commons Attribution-Noncommercial Unported license to facilitate research in computer vision, psychophysics of perception, and visual neuroscience.Comment: Submitted to PLoS ON

    A Structured Model of Video Reproduces Primary Visual Cortical Organisation

    Get PDF
    The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition

    Natural Image Coding in V1: How Much Use is Orientation Selectivity?

    Get PDF
    Orientation selectivity is the most striking feature of simple cell coding in V1 which has been shown to emerge from the reduction of higher-order correlations in natural images in a large variety of statistical image models. The most parsimonious one among these models is linear Independent Component Analysis (ICA), whereas second-order decorrelation transformations such as Principal Component Analysis (PCA) do not yield oriented filters. Because of this finding it has been suggested that the emergence of orientation selectivity may be explained by higher-order redundancy reduction. In order to assess the tenability of this hypothesis, it is an important empirical question how much more redundancies can be removed with ICA in comparison to PCA, or other second-order decorrelation methods. This question has not yet been settled, as over the last ten years contradicting results have been reported ranging from less than five to more than hundred percent extra gain for ICA. Here, we aim at resolving this conflict by presenting a very careful and comprehensive analysis using three evaluation criteria related to redundancy reduction: In addition to the multi-information and the average log-loss we compute, for the first time, complete rate-distortion curves for ICA in comparison with PCA. Without exception, we find that the advantage of the ICA filters is surprisingly small. Furthermore, we show that a simple spherically symmetric distribution with only two parameters can fit the data even better than the probabilistic model underlying ICA. Since spherically symmetric models are agnostic with respect to the specific filter shapes, we conlude that orientation selectivity is unlikely to play a critical role for redundancy reduction

    Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics

    Get PDF
    Spatial context in images induces perceptual phenomena associated with salience and modulates the responses of neurons in primary visual cortex (V1). However, the computational and ecological principles underlying contextual effects are incompletely understood. We introduce a model of natural images that includes grouping and segmentation of neighboring features based on their joint statistics, and we interpret the firing rates of V1 neurons as performing optimal recognition in this model. We show that this leads to a substantial generalization of divisive normalization, a computation that is ubiquitous in many neural areas and systems. A main novelty in our model is that the influence of the context on a target stimulus is determined by their degree of statistical dependence. We optimized the parameters of the model on natural image patches, and then simulated neural and perceptual responses on stimuli used in classical experiments. The model reproduces some rich and complex response patterns observed in V1, such as the contrast dependence, orientation tuning and spatial asymmetry of surround suppression, while also allowing for surround facilitation under conditions of weak stimulation. It also mimics the perceptual salience produced by simple displays, and leads to readily testable predictions. Our results provide a principled account of orientation-based contextual modulation in early vision and its sensitivity to the homogeneity and spatial arrangement of inputs, and lends statistical support to the theory that V1 computes visual salience

    Emergence of Visual Saliency from Natural Scenes via Context-Mediated Probability Distributions Coding

    Get PDF
    Visual saliency is the perceptual quality that makes some items in visual scenes stand out from their immediate contexts. Visual saliency plays important roles in natural vision in that saliency can direct eye movements, deploy attention, and facilitate tasks like object detection and scene understanding. A central unsolved issue is: What features should be encoded in the early visual cortex for detecting salient features in natural scenes? To explore this important issue, we propose a hypothesis that visual saliency is based on efficient encoding of the probability distributions (PDs) of visual variables in specific contexts in natural scenes, referred to as context-mediated PDs in natural scenes. In this concept, computational units in the model of the early visual system do not act as feature detectors but rather as estimators of the context-mediated PDs of a full range of visual variables in natural scenes, which directly give rise to a measure of visual saliency of any input stimulus. To test this hypothesis, we developed a model of the context-mediated PDs in natural scenes using a modified algorithm for independent component analysis (ICA) and derived a measure of visual saliency based on these PDs estimated from a set of natural scenes. We demonstrated that visual saliency based on the context-mediated PDs in natural scenes effectively predicts human gaze in free-viewing of both static and dynamic natural scenes. This study suggests that the computation based on the context-mediated PDs of visual variables in natural scenes may underlie the neural mechanism in the early visual cortex for detecting salient features in natural scenes

    Accurate classification of RNA structures using topological fingerprints

    Get PDF
    While RNAs are well known to possess complex structures, functionally similar RNAs often have little sequence similarity. While the exact size and spacing of base-paired regions vary, functionally similar RNAs have pronounced similarity in the arrangement, or topology, of base-paired stems. Furthermore, predicted RNA structures often lack pseudoknots (a crucial aspect of biological activity), and are only partially correct, or incomplete. A topological approach addresses all of these difficulties. In this work we describe each RNA structure as a graph that can be converted to a topological spectrum (RNA fingerprint). The set of subgraphs in an RNA structure, its RNA fingerprint, can be compared with the fingerprints of other RNA structures to identify and correctly classify functionally related RNAs. Topologically similar RNAs can be identified even when a large fraction, up to 30%, of the stems are omitted, indicating that highly accurate structures are not necessary. We investigate the performance of the RNA fingerprint approach on a set of eight highly curated RNA families, with diverse sizes and functions, containing pseudoknots, and with little sequence similarity–an especially difficult test set. In spite of the difficult test set, the RNA fingerprint approach is very successful (ROC AUC \u3e 0.95). Due to the inclusion of pseudoknots, the RNA fingerprint approach both covers a wider range of possible structures than methods based only on secondary structure, and its tolerance for incomplete structures suggests that it can be applied even to predicted structures. Source code is freely available at https://github.rcac.purdue.edu/mgribsko/XIOS_RNA_fingerprint

    Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models

    Get PDF
    Conventional methods used to characterize multidimensional neural feature selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MID), are limited to Gaussian stimuli or are only able to identify a small number of features due to the curse of dimensionality. To overcome these issues, we propose two new dimensionality reduction methods that use minimum and maximum information models. These methods are information theoretic extensions of STC that can be used with non-Gaussian stimulus distributions to find relevant linear subspaces of arbitrary dimensionality. We compare these new methods to the conventional methods in two ways: with biologically-inspired simulated neurons responding to natural images and with recordings from macaque retinal and thalamic cells responding to naturalistic time-varying stimuli. With non-Gaussian stimuli, the minimum and maximum information methods significantly outperform STC in all cases, whereas MID performs best in the regime of low dimensional feature spaces

    Correlated topographic analysis: estimating an ordering of correlated components

    Get PDF
    Abstract This paper describes a novel method, which we call correlated topographic analysis (CTA), to estimate non-Gaussian components and their ordering (topography). The method is inspired by a central motivation of recent variants of independent component analysis (ICA), namely, to make use of the residual statistical dependency which ICA cannot remove. We assume that components nearby on the topographic arrangement have both linear and energy correlations, while far-away components are statistically independent. We use these dependencies to fix the ordering of the components. We start by proposing the generative model for the components. Then, we derive an approximation of the likelihood based on the model. Furthermore, since gradient methods tend to get stuck in local optima, we propose a three-step optimization method which dramatically improves topographic estimation. Using simulated data, we show that CTA estimates an ordering of the components and generalizes a previous method in terms of topography estimation. Finally, to demonstrate that CTA is widely applicable, we learn topographic representations for three kinds of real data: natural images, outputs of simulated complex cells and text data

    Sparse Bayesian Learning for Nonstationary Data Sources

    No full text
    corecore