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Abstract This paper describes a novel method, which we call correlated to-
pographic analysis (CTA), to estimate non-Gaussian components and their
ordering (topography). The method is inspired by a central motivation of re-
cent variants of independent component analysis (ICA), namely, to make use
of the residual statistical dependency which ICA cannot remove. We assume
that components nearby on the topographic arrangement have both linear and
energy correlations, while far-away components are statistically independent.
We use these dependencies to fix the ordering of the components. We start
by proposing the generative model for the components. Then, we derive an
approximation of the likelihood based on the model. Furthermore, since gra-
dient methods tend to get stuck in local optima, we propose a three-step opti-
mization method which dramatically improves topographic estimation. Using
simulated data, we show that CTA estimates an ordering of the components
and generalizes a previous method in terms of topography estimation. Finally,
to demonstrate that CTA is widely applicable, we learn topographic repre-
sentations for three kinds of real data: natural images, outputs of simulated
complex cells and text data.
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1 Introduction

Many recent methods to analyze multidimensional data x = (x1, . . . , xd)
⊤ are

based on the linear mixing model

x = As, (1)

where A is the mixing matrix and s = (s1, . . . , sd)
⊤ is the source vector of

non-Gaussian latent variables. A special instance of (1) is independent com-
ponent analysis (ICA) where all the components in s are statistically inde-
pendent (Hyvärinen and Oja, 2000). The goal of ICA and related methods
is to estimate both A and s from observations of x only. The model (1) in
ICA was proven to be identifiable up to the order, signs, and scales of the
components (Comon, 1994). ICA has been used in a wide range of fields such
as computational neuroscience (Hyvärinen et al., 2009), natural language pro-
cessing (Honkela et al., 2010) and MEG/EEG analysis (Vigário et al., 2000).

However, real data do often not follow the assumptions made in ICA. For
instance, the components in smay not be statistically independent. When such
components are estimated with ICA, statistical dependencies between the es-
timates can be observed, in violation of the independence assumption made.
For natural images, for example, the conditional variance of an estimated
component si may depend on the value of another component sj : As |sj | in-
creases, the conditional variance of si grows. This means that the conditional
distribution of si becomes wider as |sj | increases, which gives the conditional
histogram a characteristic bow-tie like shape (Simoncelli, 1999; Karklin and
Lewicki, 2005). An alternative formulation of this dependency is energy corre-
lation, cov(s2i , s

2
j ) > 0: both s2i and s2j tend to be co-active (Hyvärinen et al.,

2009).
Therefore, it seems important to relax the independence assumption. To-

pographic ICA (TICA) is based on this idea (Hyvärinen et al., 2001). The key
point of TICA is to arrange the components on an one- or two-dimensional
grid or lattice, and allow nearby components to have energy correlations, while
far-away components are assumed statistically independent. Thus, energy cor-
relations define the proximity of the components and can be used to fix their
ordering. Osindero et al. (2006) proposed another related method and their
results for natural image data were similar to those obtained with TICA, al-
though their estimations were overcomplete in contrast to the ones in TICA.
Karklin and Lewicki (2005) proposed a hierarchical model where the second
layer learns variance components. Further related work includes tree-like mod-
eling of the dependencies of the components (Bach and Jordan, 2003; Zoran
and Weiss, 2009).

The components in TICA are constrained to be linearly uncorrelated. How-
ever, uncorrelated components are not always optimal. In fact, both linear and
energy correlations can be observed in many practical situations. Consider
the outputs of two collinearly aligned Gabor-like filters. As natural images
often contain long edges, their outputs have both linear and energy correla-
tions (Coen-Cagli et al., 2012). Such linear correlations make the conditional
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histogram of the outputs have a tilted bow-tie like shape. Coherent sources
in MEG or EEG data can be linearly correlated too, due to neural inter-
actions (Gómez-Herrero et al., 2008). As we will see later, another example
occurs in the analysis of text data.

In this paper, we propose a new statistical method which we call correlated
topographic analysis (CTA). In CTA, topographically nearby components have
linear and energy correlations, and those dependencies are used to fix the
ordering as in TICA. Since CTA is sensitive to both kinds of correlations, only
one kind (linear or energy) needs to exist in the data. CTA thus generalizes
TICA for topography estimation.

In addition to proposing the statistical model of CTA, we propose an op-
timization method that performs better than standard procedures in terms of
local optima. This method dramatically improves topography estimation, and
we verify its performance on simulated as well as real data.

This paper is organized as follows. Section 2 motivates the estimation of
topographic representations, and presents the new statistical method CTA.
CTA is introduced as a special case of a more general framework which also
includes ICA and TICA. In Section 3, we use simulated data to verify identi-
fiability of the linear mixing model in (1) for sources with various dependency
structures, and compare the performances of ICA, TICA and CTA. In Sec-
tion 4, CTA is applied on three kinds of real data: natural images, outputs
of simulated complex cells and text data. The applicability on such a wide
range of data sets suggests that CTA may be widely applicable. Connections
to previous work are discussed in Section 5. Section 6 concludes this paper.

2 Correlated Topographic Analysis

We start by motivating the estimation of topographic representations. Then,
we introduce a generative model for the sources s in order to model ICA,
TICA and CTA in a unified way, and describe the basic properties of the
components in CTA. We then derive an approximation of the likelihood for
CTA and propose a method for its optimization.

2.1 Motivation for Estimating Topographic Representations

The foremost motivation for estimating topographic representations is visual-
ization. Plotting the components with the topographic arrangement enables
us to easily see the interrelationships between components. This is particularly
true if the topographic grid is two dimensional and can thus be plotted on the
plane.

A second motivation is that the topography learned from natural inputs
such as natural images, natural sound, or text, might model cortical represen-
tations in the brain. This is based on the hypothesis that in order to minimize
wiring length, neurons which interact with each other should be close to each



4 Hiroaki Sasaki et al.

Table 1 Dependencies of pairs of nearby elements in σ and z on four cases of sources and
the corresponding source model.

Case 1 Case 2 Case 3 Case 4

σ cov(σ2
i , σ

2
j ) = 0 cov(σ2

i , σ
2
j ) ̸= 0 cov(σ2

i , σ
2
j ) = 0 cov(σ2

i , σ
2
j ) ̸= 0

z cov(zi, zj) = 0 cov(zi, zj) = 0 cov(zi, zj) ̸= 0 cov(zi, zj) ̸= 0

Model ICA TICA not explicitly considered CTA

other, see e.g. (Hyvärinen et al., 2009). Minimizing wiring seems to be impor-
tant to keep the volume of the brain manageable, and possibly to speed up
computation as well.

An example is computation of complex cell outputs based on simple cell
outputs in primary visual cortex (V1). Simple cells are sensitive to an oriented
bar or an edge at a certain location in visual space, while complex cells are
otherwise similar, but invariant to local sinusoidal phases of visual stimuli.
Computationally, such a conversion can be achieved by pooling the squares
of the outputs of the simple cells which have similar orientation and spatial
location, but different phases. A topographic representation where simple cells
are arranged as observed in V1 could minimize the wiring needed in such a
pooling because the pooling is done over nearby cells. Such a minimum-wiring
topography was found to emerge from natural images using TICA (Hyvärinen
et al., 2001).

Related to minimum wiring, the topography may also enable simple defini-
tion of new, higher-order features. Summation of the features in a topographic
neighborhood (possibly after a nonlinearity such as squaring) may even in gen-
eral lead to interesting new features, just as in the case of simple cell pooling
explained above.

2.2 The Generative Model

We begin with the following generative model for the latent source vector s in
(1),

s = σ ⊙ z, (2)

where ⊙ denotes element-wise multiplication, and σ = (σ1, . . . , σd) and z =
(z1, . . . , zd) are statistically independent. The two key points of the generative
model (2) are the following:

1. If z is multivariate Gaussian with mean 0 and the elements in σ are positive
random variables, which is what we assume in the following, the compo-
nents in s are super-Gaussian, i.e., sparse (Hyvärinen et al., 2001).

2. By introducing linear correlations in z and/or energy correlations in σ, the
components in s will have linear and/or energy correlations. This point will
be made more precise in the following.
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A special case of the model in (2) results in ICA:

Case 1 If all the elements in z and σ are statistically independent, then s is a
vector with independent sparse sources, and (2) gives the source model of
ICA.

The source model of TICA can also be obtained as a special case:

Case 2 If all the elements in z are uncorrelated, but the squares of nearby ele-
ments in σ are correlated, then s is a vector formed by sparse sources with
energy correlations (and no linear correlations) within a certain neighbor-
hood, and thus (2) gives the source model of TICA.

Here, we introduce the following two further cases:

Case 3 If nearby elements in z are correlated, but all the elements in σ are
statistically independent, then s is a sparse source vector whose elements
have linear correlations (and zero or weak energy correlations) within a
certain neighborhood.

Case 4 If nearby elements in z and the squares of nearby elements in σ are
correlated, then s is a sparse source vector whose elements have linear and
energy correlations within a certain neighborhood, and (2) gives the source
model of CTA.

The statistical dependencies of the above four cases for σ and z are summarized
in Table 1.

In the following, we concentrate on Case 4 (both energy and linear corre-
lations). We do not explicitly consider Case 3 (linear correlations only), but
we will show below with simulations that CTA identifies its sources and esti-
mates the ordering of the components as well. This is natural since the model
in Case 4 uses both linear and energy correlations to model topography, while
Case 3 uses linear ones only.

2.3 Basic Properties of the Model

We give here basic properties of the CTA generative model (Case 4 above)
and discuss the differences to TICA (Case 2). Regarding the mean, linear
correlation and energy correlation in the model, the following can be shown in
general:

– The mean values of all the components are zero.

E{si} = E{σi}E{zi} = 0. (3)

– Nearby components, si and sj , are correlated if and only if zi and zj are
linearly correlated. From the property (3), this is proven by

cov(si, sj) = E{σiσj}E{zizj}︸ ︷︷ ︸
cov(zi,zj)

= E{σiσj}cov(zi, zj). (4)
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Thus, cov(si, sj) is the same as cov(zi, zj) up to the positive multiplication
factor E{σiσj}. The linear correlation coefficient of the components has an
upper bound (Appendix A).

– The energy correlation for si and sj can be computed as

cov(s2i , s
2
j ) = E{s2i s2j} − E{s2i }E{s2j},

= E{σ2
i σ

2
j }E{z2i z2j } − E{σ2

i }E{σ2
j }E{z2i }E{z2j },

= E{z2i }E{z2j }cov(σ2
i , σ

2
j ) + 2E{σ2

i σ
2
j }cov(zi, zj)2, (5)

where we used the formula valid for Gaussian variables with zero means,
E{z2i z2j } = E{z2i }E{z2j } + 2E{zizj}2 which is proven by Isserlis’ theo-
rem (Isserlis, 1918; Michalowicz et al., 2009). From (5), the energy cor-
relation is caused by the energy correlation for σ and the squared linear
correlation for z. Thus, to prove that cov(s2i , s

2
j ) > 0, it is enough to prove

that cov(σ2
i , σ

2
j ) > 0. In the literature of TICA (Hyvärinen et al., 2001),

cov(σ2
i , σ

2
j ) is conjectured to be positive when each σi takes the following

form,

σi = ϕi

 ∑
j∈N(i)

ui+j

 , (6)

where N(i) is an index set to determine a certain neighborhood, ϕi(·) de-
notes a monotonic nonlinear function and ui is a positive random variable.
We follow this conjecture. The energy correlation coefficient of the compo-
nents has also an upper bound (Appendix A).

The same analysis has been done for the TICA generative model (Case 2)
in (Hyvärinen et al., 2001). In the model, the sources are linearly uncorrelated,
and, regarding energy correlation, only the first term in (5) is nonzero because
the elements in z are statistically independent. Thus, compared to TICA, in
CTA, there exist linear correlations and the energy correlations are stronger
as well.

2.4 Probability Distribution and its Approximation

We derive here a probability distribution for s to estimate the CTA generative
model. We make the assumption that the precision matrix Λ of z takes a
tridiagonal form, and thus, the distribution of z is given by

p(z;Λ) =
|Λ|1/2

(2π)d/2
exp

(
−1

2
z⊤Λz

)
,

=
|Λ|1/2

(2π)d/2

d∏
i=1

exp

{
−1

2

(
z2i + 2λizizi+1

)}
, (7)
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Fig. 1 A sketch of the process generating data x. Adjacent elements of z are not statistically
independent.

where the boundary of zi is ringlike, i.e., zi±d = zi. All the diagonal elements
in Λ are 1, the (i, i + 1)-th elements are denoted by λi and the others are 0.
For σ, we suppose that each element is given by

σi = (ui−1 + ui + vi)
−1/2, (8)

where, ui and vi are independent positive random variables and statistically
independent from each other. Such a mixture of ui−1 and ui creates energy
correlations in the source vector s, while vi generates a source-specific variance.
By assuming (8), we follow the conjecture in TICA that energy correlations
are positive, as in (6). We assume inverse Gamma distributions for u and v,

p(v,u;a,b) =
d∏

i=1

√
ai
2π

v
−3/2
i exp

(
− ai
2vi

)
×

d∏
i=1

bi
2
u−2
i exp

(
− bi
2ui

)
. (9)

The ai and bi are positive scale parameters. If a scale parameter approaches
zero, the corresponding variable converges to zero in the sense of distribution.
For example, if bi → 0 for all i, the ui approach zero, which decouples the σi

from each other. A sketch of the process which generates the sources s and
data x is depicted in Figure 1.

Inserting (2) into (7) gives the conditional distribution for s given σ,

p(s|σ;λ) = |Λ|1/2

(2π)d/2

d∏
i=1

1

σi
exp

{
−1

2

(
s2i
σ2
i

+ 2λi
sisi+1

σiσi+1

)}
. (10)
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We show in Appendix B that Equation (8) transforms (10) as

p(s|v,u;λ) = |Λ|1/2

(2π)d/2

d∏
i=1

√
ui−1 + ui + vi exp

[
−1

2

{
(ui−1 + ui + vi)s

2
i

+ 2λi

√
(ui−1 + ui + vi)(ui + ui+1 + vi+1)sisi+1

}]
,

=
|Λ|1/2

(2π)d/2

d∏
i=1

√
ui−1 + ui + vi exp

[
−1

2

{
s2i vi + (s2i + s2i+1)ui

+ 2λisisi+1

√
(ui−1 + ui + vi)(ui + ui+1 + vi+1)

}]
. (11)

To obtain the distribution for s, we need to integrate out u and v in (11) us-
ing (9) as prior distributions. However, this seems to be intractable. Therefore,
we resort to two approximations, √

ui−1 + ui + vi ≈ ci
√
ui, (12)√

(ui−1 + ui + vi)(ui + ui+1 + vi+1) ≈ diui, (13)

where ci and di are two unknown positive scaling parameters which do not
depend on u and v. The above approximations are similar to what has been
done for TICA (Hyvärinen et al., 2001, Equation 3.7). Below we analyze the
implications of these approximations. With (12) and (13), an approximation
of (11) is

p̃(s|v,u;λ) = |Λ|1/2

(2π)d/2

d∏
i=1

ci
√
ui exp

[
−1

2

{
s2i vi +

(
s2i + s2i+1 + 2λidisisi+1

)
ui

}]
,

∝
d∏

i=1

√
ui exp

[
−1

2

{
s2i vi +

(
s2i + s2i+1 + 2λidisisi+1

)
ui

}]
, (14)

where we dropped terms not depending on s,v, or u. The additional parame-
ters ci from (12) do not affect the functional form of the approximation. The
parameters di from (13) and λi occur only as a product. We thus replace them
by the new parameter ϱi = λidi. By calculating the integral over u and v,
see Appendix C for details, we obtain the following approximation for the
probability distribution of s,

p̃(s;ϱ,a,b) ∝
∏
i

exp

(
−
√
ai|si| −

√
bi

√
s2i + s2i+1 + 2ϱisisi+1

)
. (15)

We use the proportionality sign because we do not know the partition function
which normalizes p̃(s;ϱ,a,b).

The approximation in (15) relates to ICA, TICA, and CTA as follows: In
the limit where bi → 0, p̃ becomes the Laplace distribution, as often used in
ICA with sparse sources (Case 1). In the limit where ai → 0 and ϱi = 0 for all
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i, we obtain TICA (Case 2). Using the fixed values ai = bi = 1 and ϱi = −1,
we obtain

p̃(s) ∝
d∏

i=1

exp (−|si| − |si − si+1|) , (16)

which serves as approximative distribution for the CTA model (Case 4) with
positively correlated sources, as we justify in more detail below. Note that this
distribution has been previously used as a prior for the regression coefficients
in the fused lasso for supervised learning (Tibshirani et al., 2005). However,
our application on modeling latent variables is very different.

2.5 Accuracy of the Approximation

The two approximations (12) and (13) were used to derive (16). To analyze the
implications of these approximations, we compared (16) with the generative
model in (2) in terms of correlation and sparsity of the sources.

For the comparison, we sampled from (2) using d = 2 sources and the
fixed values ai = bi = 1 for different values of λi = λ. We sampled from (16),
with d = 2, using slice sampling.1 For both models, we drew 106 samples to
compute the correlation coefficient between the two sources, the correlation
coefficient between their squared values, and their kurtosis.

Figure 2 shows the correlation coefficients for (2) as a function of λ (curves
with solid lines), and the correlation coefficients for the approximation (16) as
dashed horizontal lines. The plot suggests that the approximation has quali-
tatively similar correlation coefficients as the generative model for a λ close to
-1.

For the generative model, we found that the (excess) kurtosis of the sources
was independent of λ, with a value around 3.4. For the approximation, we
obtained a value around 2.1. This means that both the original model and the
approximation yield sparse sources.

To conclude, we confirmed that the approximation has qualitatively similar
properties as the generative model for a λ close to -1. The limitations of the
approximation are that the sources are more strongly energy correlated but
less sparse than in the original generative model for λ close to -1.

2.6 Objective Function and its Optimization

Using the approximative distribution (16), we can compute the log-likelihood
for x and obtain the following objective function to estimate the parameter

1 We used MATLAB’s slicesample.m with a burn-in period of 50,000 samples.
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Fig. 2 Comparing the generative model in (2) with the approximation in (16) in terms of
their correlation structure. The blue and red solid curves show the correlation coefficient
of the components and their squared values, respectively, for the generative model. The
horizontal dashed lines show the correlation coefficients for the approximation. We find that
the approximation has qualitatively similar correlation coefficients as the generative model
for a λ close to -1.

matrix W = (w1, . . . ,wd)
⊤ = A−1:

J(W) = J1(W) + J2(W), (17)

J1(W) = − 1

T

T∑
t=1

d∑
i=1

G(w⊤
i x(t)) + log | detW|, (18)

J2(W) = − 1

T

T∑
t=1

d∑
i=1

G(w⊤
i x(t)−w⊤

i+1x(t)), (19)

where we replaced | · | with G(·) = log cosh(·) for numerical reasons. The vector
x(t) denotes the t−th observation of the data, t = 1, 2, . . . , T . Note that J1 is
the log-likelihood for an ICA model and that J2 models the topographic part,
being sensitive to the order as well as the signs of the wi.

We now describe a method to optimize the objective function in (17) be-
cause basic gradient methods tend to get stuck in local maxima as we will see
in the next section. The proposed algorithm includes the following three steps:

Algorithm 1: Three-Step Optimization

Step 1 Maximize J1(W) only, based on a conjugate gradient
method (Rasmussen, 2006) as

W(1) = argmax
W

J1(W). (20)
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Step 2 Compute s(1)(t) = W(1)x(t). Optimize the order and signs of s
(1)
i (t) in

J2 as

k∗, c∗ = argmax
k,c

[
− 1

T

T∑
t=1

d∑
i=1

G(cis
(1)
ki

− ci+1s
(1)
ki+1

)

]
, (21)

where k = (k1, . . . , kd) is an index vector with ki ∈ {1, . . . , d} and
ki ̸= kj for i ̸= j, and c = (c1, . . . , cd) denotes a sign vector:
ci ∈ {−1, 1}. The vectors k∗ and c∗ transform W(1) to

W(2) = (c∗1w
(1)
k∗
1
, . . . , c∗dw

(1)
k∗
d
)⊤ where w

(1)
i denotes the i-th row vector

in W(1). This optimization will be done by Algorithm 2 given below.
Step 3 Maximization of J(W) using W(2) as the initial values on W.

W(3) = argmax
W

J(W), (22)

where the conjugate gradient method in Step 1 is applied again.

The final output of the algorithm isW(3). Step 1 corresponds to performing
ICA, and Step 2 gives the optimal order and the optimal signs of the ICA
components in the sense of the objective function J2. In Step 3, W(2) is used
as initial value of W. Therefore, Step 1 and Step 2 can be interpreted as a
way to find a good initial value.

In Step 2, we have to solve a combinatorial optimization problem, which is
computationally very difficult. However, we can see that the problem (21) has
a nestedness property, in other words, we can divide the main problem into
subproblems. So we can efficiently solve it. For example, suppose c1 = 1 and
k1 = 1. When we want to find the optimal c2 and k2 given these c1 and k1, we
end up with solving a smaller subproblem, which is to maximize the two terms,

f2(k3, c3) = argmaxk2,c2

[
− 1

T

∑T
t=1

{
G(s

(1)
1 − c2s

(1)
k2

) +G(c2s
(1)
k2

− c3s
(1)
k3

)
}]

be-

cause the other terms do not include k2 and c2. Then, we can reuse f2(k3, c3)
in finding the optimal c3 and k3. Under this situation, dynamic programming
(DP) (Bellman, 1957; Bellman and Dreyfus, 1962; Held and Karp, 1962) is one
efficient optimization method. The description of the resulting DP algorithm
is as follows:

Algorithm 2: Finding the optimal order and signs

Input: ICA components, s(1)(1), s(1)(2), . . . , s(1)(T )

1. Initialization: Fix the index and sign of the first component, c1 = 1 and
k1 = 1, and compute and store

f1(k2, c2) = − 1
T

∑T
t=1 G

(
s
(1)
1 (t)− c2s

(1)
k2

(t)
)
as a table. (The index and

sign of the first component can be arbitrarily fixed.)
2. Repeat the computation of the tables for the conditionally optimal indices,

signs and values to the subproblems: maximizing the subsets of the objective
function in (21) from i = 2 to i = d− 1:
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(a) Compute

h(ki, ci, ki+1, ci+1) = − 1

T

T∑
t=1

G
(
cis

(1)
ki

(t)− ci+1s
(1)
ki+1

(t)
)

(23)

for all possible combinations of (ki, ci) and (ki+1, ci+1).
(b) Compute the conditionally optimal values of subsets of the objective

function fi(ki+1, ci+1) and store those values in tabular form,

fi(ki+1, ci+1) = max
ki,ci

[fi−1(ki, ci) + h(ki, ci, ki+1, ci+1)] . (24)

Simultaneously, create the tables for the conditionally optimal indices and
signs:

k̂i(ki+1, ci+1), ĉi(ki+1, ci+1) = argmax
ki,ci

[fi−1(ki, ci) + h(ki, ci, ki+1, ci+1)] ,

(25)

where ki+1 ̸= ki and ki+1, ki ̸∈ {k̂i−1(ki, ci), . . . , k̂2(k̂3, ĉ3)}.
3. Compute the optimal index and sign of the last component by

k∗d, c
∗
d = argmax

kd,cd

[
fd−1(kd, cd)−

1

T

T∑
t=1

G
(
cds

(1)
kd

(t)− s
(1)
1 (t)

)]
. (26)

4. Sequentially find the optimal indices k∗i and signs c∗i from i = d− 1 to i = 2
by using the tables,

k∗d−1 = k̂d−1(k
∗
d, c

∗
d),

k∗d−2 = k̂d−2(k
∗
d−1, c

∗
d−1),

...

k∗2 = k̂2(k
∗
3 , c

∗
3)

c∗d−1 = ĉd−1(k
∗
d, c

∗
d),

c∗d−2 = ĉd−2(k
∗
d−1, c

∗
d−1),

...

c∗2 = ĉ2(k
∗
3 , c

∗
3)

Output:The optimal indices (order) k∗ = (1, k∗2 , . . . , k
∗
d) and signs

c∗ = (1, c∗2, . . . , c
∗
d).

The last term in the right-hand side of (26) was added because of the ring-like
boundary. The MATLAB package of CTA by which several results presented
in this paper can be reproduced is available at http://www.cs.helsinki.fi/
u/ahyvarin/code/cta.

We now briefly describe the run-time cost of the optimization. When
data is high-dimensional, most of the time is spent on the dynamic program-
ming part (Algorithm 2). The computation of (23) is T times additions, and
the additions are repeated 4(d − i + 1)(d − i) times to make the i-th table
(24). This means that the computational cost for addition is approximately

O(4T
∑d−1

i=2 (d − i + 1)(d − i)) = O(Td3). Thus, as the dimension of the data
increases, more computational time is needed. But, as we will see below, this
algorithm dramatically improves results in terms of topography estimation.
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3 Identifying Simulated Sources

In this section, we investigate how the objective function in (17) can be used
to estimate the model (1) with sources generated according to the four cases
outlined in the previous section, and compare the performances of ICA, TICA
and CTA.

3.1 Methods

We generated sources s according to the four cases of (2). We sampled z from
a Gaussian distribution with mean 0 and covariance matrix C: In Case 3 and
Case 4, all the diagonal elements are 1, the (i, i+1)-th element ci,i+1(= ci+1,i)
is 0.4 with a ring-like boundary, and the other elements are 0. In Case 1 and
Case 2, C is the identity matrix. For σ, each element in Case 2 and Case 4 is
generated as σi = ri−1 + ri + ri+1 where ri is sampled from the exponential
distribution with mean 1. In Case 1 and Case 3, σi = ri. After generating s,
the mean and variance of all the components si are standardized to zero and
one, respectively. The dimension of s and the number of samples are d = 20
and T = 30, 000, respectively.

For the generated sources of Case 3, we verified that the energy correlation
was very weak: the mean of the energy correlation coefficient in s21 and s22 and
its standard deviation in 100 source sets were 0.0192 and 0.0102, respectively.

Then, the data x was generated from the model (1) where the elements of
A were randomly sampled from the standard normal distribution. The pre-
processing consisted of whitening based on PCA.

For the estimation of ICA, we perform only Step 1 in Section 2.6. For
TICA, Step 1 is performed as in CTA, but the objective functions in Step 2
and Step 3 are replaced by

JTICA(W) = − 1

T

T∑
t=1

d∑
i=1

√
0.1 + (wix(t))2 + (wi+1x(t))2 + log | detW|.

(27)

In Step 2 for TICA, we do not optimize the signs of the components because
(27) is insensitive to the change of signs. However, we do optimize the ordering
using DP, and thus the TICA algorithm used here is an improved version
of the original algorithm by Hyvärinen et al. (2001) in terms of topography
estimation.

We visualize the estimation results by showing the performance matrix
P = WA. If the estimation of the ordering is correct, P should be close to a
diagonal matrix, or a circularly shifted diagonal matrix because of the ring-like
boundary.
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-1 0 1

(a) gradient method only (b) true initialization (c) proposed method

Fig. 3 Performance matrices from (a) the conjugate gradient method only, (b) the true
initialization and (c) the proposed optimization method. All performance matrices are nor-
malized by the absolute maximum value in each P, and the data are generated using Case 4
sources. The value of the objective function J(W) in (17) is denoted below each figure.

(a) (b) (c)

-1 0 1

Fig. 4 Covariance matrices of (a) the original components; and components estimated by
(b) the conjugate gradient method only and by (c) the proposed optimization method. The
components are standardized.

3.2 Results

We first show the effectiveness of our three-step optimization method in opti-
mizing J . Then, we show the results of the comparison between ICA, TICA
and CTA.

3.2.1 Escaping from Local Maxima

To clarify the necessity of the optimization method described in Section 2.6,
we first show the result obtained by the conjugate gradient method only, which
is equivalent to performing only Step 3 with a random initial value on W. A
performance matrix P for sources generated according to Case 4 is shown in
Figure 3(a). Obviously, P is different from a (shifted) diagonal matrix. This
means that the order of the estimated components is almost random, and that



Correlated Topographic Analysis 15

(a) (b) (c)

Fig. 5 (a) The performance matrix obtained by ICA. (b) The performance matrix per-
muted manually so that the maximum absolute value in each row is on the diagonal, and
(c) the signs in the matrix are changed as well. The value of J2(W) in (19) is shown below
each figure.

the estimation is incorrect. To clarify the situation, we conducted an additional
experiment where W was initialized with the true matrix A−1. The resulting
matrix P is shown in Figure 3(b): P is much closer to the identity matrix and
a quite good estimate. Then, we compared the values of the objective function
J for the two initial conditions, the numbers are shown below Figure 3(a) and
(b). The comparison shows that the bad solution was a local maximum, and
that we thus need an optimization method to escape from it.

A simple approach to escape from local maxima would be to permute the
estimated components. However, such a permutation changes the structure of
the covariance matrix, and thus provides a bad fit to the model, decreasing the
objective function. In fact, as can be seen in Figure 4(a) and (b), the structure
of the covariance matrices for the original source vector and its estimate in the
local maximum are qualitatively similar. Instead of permuting at the end, we
empirically found it useful to permute the components at the beginning, after
an initial estimation with ICA. The performance matrix P = W(1)A obtained
by using ICA (performing only Step 1 in Section 2.6) is shown in Figure 5(a).
For Figure 5(b), the order of the row vectors in W(1) was manually determined
so that the maximum element on each row of P is located on a (shifted)
diagonal. For (c), their signs were also changed manually. A comparison of the
values of J2, shown in Figure 5,2 indicates that changing also the signs increases
the objective function. This evidence strongly suggests that we should optimize
not only the order, but also signs of the components estimated by ICA. This
motivates the three-step optimization method in Section 2.6.

Figure 3(c) shows the result when the three-step optimization method is
applied to our example. The performance matrix is close to a shifted identity
matrix, and the value of the objective function equals the one in Figure 3(b).
This means that our estimation is performed correctly. Furthermore, note that

2 J1 is insensitive to any change of the order and signs of the components. Therefore, we
computed only J2 instead of J .
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the signs of the diagonal elements of P in Figure 3(c) all agree. This means that
CTA solves also the sign indeterminacy problem in ICA. This is impossible
for TICA because the objective function (27) is insensitive to the signs of the
components.

3.2.2 Comparison to ICA and TICA

Next, we perform 100 trials for each of the four cases of sources, and compare
the performance of the three methods.

To quantify how well the components are estimated, we use the Amari
index (AI) (Amari et al., 1996). To further investigate how well the topography
was estimated, we define a topography index (TI). To compute TI, like for AI,
we first normalize P in order to take the scale indeterminacy of ICA into
account. After taking the absolute values of all the elements in P, each row
and column is divided by its maximum value which gives the matrices |P1|
and |P2|, respectively. Next, we compute the sums over all possible shifted
diagonals in |P1| and |P2|, and extract the maximum values, which are denoted
by S1 and S2. Examples of shifted diagonal paths along which we compute the
sums are depicted in Figure 6(a). TI is finally given by

TI =
S1 + S2

2d
. (28)

Matrices which show the best performance, giving TI = 1, are diagonal or
circularly shifted diagonal ones.

Performance matrices for one of the 100 trials are presented in Figure 6(a).
CTA shows the best performance for sources from Case 2 to Case 4 for topog-
raphy estimation. TICA cannot estimate the topography for Case 3. Regarding
AI (Figure 6(b)), CTA is not as good as ICA and TICA in Case 1 and Case 2.
This is presumably because CTA forces the estimated components to be cor-
related even if they are not. For Case 3 and Case 4, CTA shows almost the
same or a better performance than ICA and TICA. Regarding TI (Figure 6(c)),
only CTA can estimate the ordering of the components in all three topographic
cases (Case 2, Case 3 and Case 4). TICA cannot estimate the topography for
Case 3. We conclude that CTA shows the best performance among the three
methods and generalizes TICA for topography estimation. The performance
of CTA is weaker in the case of sources with no linear correlations in terms of
identifiability, but it is at least as good as ICA or TICA in the case of sources
with linear ones.

4 Application to Real Data

In this section, CTA is applied to three kinds of real data: natural images,
outputs of simulated complex cells in V1, and text data.
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Fig. 6 (a) Examples of performance matrices for ICA, TICA and CTA in the four cases of
sources. The arrows in the figure represent examples of circularly shifted diagonal trajectories
in the computation of the topography index. (b) and (c) depict box plots of Amari index
and topography index, respectively, obtained in 100 trials. RAND in (b) and (c) gives
the baseline obtained using 100 random matrices and 100 random permutation matrices,
respectively. Amari index for RAND was around 250. For Amari index, smaller means better
performance. For topography index, larger means better.
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For natural images and outputs of complex cells, the objective function in
(17) is extended to a two-dimensional lattice so that a component is dependent
with eight adjacent components. The extended objective function is given by

J(W) = J1(W) + J2(W), (29)

J1(W) = − 1

T

T∑
t=1

dy∑
i=1

dx∑
j=1

G(w⊤
i,jx(t)) + log |detW|, (30)

J2(W) = − 1

T

T∑
t=1

dy∑
i=1

dx∑
j=1

[
G(dsrhi,j(t)) +G(dslvi,j(t)) +G(dslli,j(t)) +G(dslri,j(t))

]
,

(31)

where wi,j represents the row vector in W that corresponds to the component

at position (i, j) on the two-dimensional lattice. Further, dsrhi,j = w⊤
i,jx(t) −

w⊤
i,j+1x(t), ds

lv
i,j = w⊤

i,jx(t)−w⊤
i+1,jx(t), ds

ll
i,j = w⊤

i,jx(t)−w⊤
i+1,j−1x(t), and

dslri,j = w⊤
i,jx(t)−w⊤

i+1,j+1x(t) are the differences to the right horizontal, lower
vertical, lower left and lower right component, respectively. The optimization
method in Section 2.6 was modified according to this extension: we extended
Step 2 for the two-dimensional lattice and used (29) as the objective function
in Step 3. Details about the extension of Step 2 can be found in Appendix D.

4.1 Natural Images

Here, we apply CTA to natural image patches.

4.1.1 Methods

The data x(t) are 20 by 20 image patches which are extracted from natu-
ral images.3 The total number of patches is 100, 000. As preprocessing, the
DC component of each patch is removed, and whitening and dimensionality
reduction are performed by PCA. We retain 252 dimensions.

4.1.2 Results

The estimated basis vectors are presented in Figure 7. Each basis vector has
spatially localized, oriented and band-pass like properties as seen in previous
work (Olshausen and Field, 1996; Bell and Sejnowski, 1997). Furthermore,
there is a clear topographic organization; similar basis vectors tend to be close
to each other. A similar topographic relation can be seen in TICA (Hyvärinen
and Hoyer, 2001).

3 The natural images here were taken from the software package associated with the book
(Hyvärinen et al., 2009), available at http://www.naturalimagestatistics.net.
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Fig. 7 Estimated basis vectors from natural image patches.

Fig. 8 Scatter plots of fitted Gabor parameters for pairs of adjacent basis vectors. (a) and
(b) show the spatial location along x- and y-axis. (c) shows the orientation, (d) the spatial
frequency and (e) the phase. (f) Histogram of the phase parameter.
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To quantify the similarity between adjacent basis vectors and clarify the
difference to TICA, we fitted Gabor functions to each basis vector. The scat-
ter plots of the fitted Gabor parameters for pairs of adjacent basis vectors are
depicted in Figure 8. Spatial locations and orientation have strong correla-
tions (Figure 8(a), (b) and (c)). A large portion of basis vectors prefers high
frequency (Figure 8(d)). These results show that adjacent basis vectors have
similar properties. Quite similar results were obtained by TICA (Hyvärinen
and Hoyer, 2001). The phase parameter however shows a clear difference. Fig-
ure 8(e) shows that there seems to exist four clusters in the scatter plot for
the phases. This is in contrast to TICA where there is no clear structure in
the scatter plot (Hyvärinen and Hoyer, 2001, Figure 5). In fact, the phase
parameters are dominantly ±π/2 (Figure 8(f)). This result means that most
of the basis vectors have odd-symmetric spatial patterns, i.e., they represent
edges, instead of bars.

4.2 Simulated Complex Cells

Next, CTA is applied to the outputs of simulated complex cells in V1 when
stimulated with natural images. ICA and its related methods have been applied
to this kind of data before (Hoyer and Hyvärinen, 2002; Hyvärinen et al., 2005).
Our purpose here is to investigate what kind of topography emerges for the
learned higher-order basis vectors.

4.2.1 Methods

The output of a complex cell xk is computed by the energy model:4

x′
k =

(∑
x,y

W o
k (x, y)I(x, y)

)2

+

(∑
x,y

W e
k (x, y)I(x, y)

)2

, (32)

xk = log(x′
k + 1.0), (33)

where I(x, y) is a 24 by 24 natural image patch, and W o
k (x, y) and W e

k (x, y)
are even and odd symmetric Gabor functions with the same parameters except
for their phases. The total number of the patches is T = 100, 000. The complex
cells are arranged on a two-dimensional 6 by 6 grid, and at each point, there
are cells with four different orientations and one frequency band. The total
number of cells is 6 × 6 × 4 = 144. The vector x is then analyzed by CTA.
Preprocessing is the same as in Section 4.1.1. The retained PCA dimension is
100.

4.2.2 Results

The topographic map of higher-order basis vectors is shown in Figure 9(a).
We visualized the basis vector as in previous work (Hoyer and Hyvärinen,

4 The contournet MATLAB package is used to compute the outputs of complex cells and
available at http://www.cs.helsinki.fi/u/phoyer/software.html.
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(a) (b)

-

+

Fig. 9 (a) Higher order basis obtained from natural images. Note that the boundary
condition of the map is ring-like. (b) Prominent features in (a), which are long contours,
end-stopping and star-like features. The green lines in (a) separate the star-like features
from the other ones. These outlines were determined manually.

2002; Hyvärinen et al., 2005). For each basis vector, each ellipse represents the
spatial extent of the oriented filters,W o

k (x, y) andW e
k (x, y), and its orientation

is the orientation which a complex cell detects. In Figure 9(b), three prominent
features are highlighted, which represent long contours, end-stopping and star-
like features. On the map, the three kinds of basis vectors are separated from
each other and have systematic order relationships. Furthermore, nearby long
contour features tend to have the same orientation.

Next, to test if the learned features might be due to artifacts introduced by
the fixed complex cell model, we performed the same experiment when I(x, y)
is Gaussian noise. Such a I(x, y) was sampled from the Gaussian distribution
with mean 0 and the covariance matrix equal to the one in the natural images
used in Figure 9. The map of higher order basis vectors for the noise input is
depicted in Figure 10. Star-like features are still present, but there are no long
contour and end-stopping features. Therefore, we conclude that long contours,



22 Hiroaki Sasaki et al.

Fig. 10 Higher order basis for Gaussian noise inputs.

end-stopping features and the learned topography are due to the properties of
natural images.

For comparison, we performed the same experiment by TICA.5 The es-
timated higher order basis is presented in Figure 11(a). As in Figure 9(a),
star-like features and long contours exist. However, those features are not as
well topographically aligned as those in CTA. The star-like features for TICA
are more scattered on the map of the higher order basis, which disturbs the
map of the features that are related to the properties of natural images. For
CTA, the end-stopping features and the long contours are more neatly sepa-
rated from the star-like features, which makes the learned topographic map
better (Figure 9(a)). Furthermore, most of the long contours in TICA seem
to be shorter than those in CTA (Figure 9(b) and (c)). Thus, CTA estimates
longer contours and a cleaner topography than TICA does.

5 For TICA extended to a two-dimensional lattice, we simply maximized the objective
function only by the conjugate gradient method (Rasmussen, 2006), and did not optimize
the order of the components because the functional form of the objective function in TICA is
different from the one in CTA. Therefore, the optimization method described in Appendix D
could not be applied.
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(a)

(b)

(c) CTA

TICA

Fig. 11 (a) Higher order basis estimated by TICA for natural image inputs. The green
lines separate the star-like features from the other kind of features. Note that the boundary
condition of the map is ring-like. (b,c) Three examples of vertical contours estimated by
TICA and CTA.

4.3 Text Data

Our final application of CTA is for text data. Previously, ICA has been applied
to similar data. Kolenda et al. (2000) analyzed a set of documents and showed
that ICA found more easily interpretable structures than the more traditional
latent semantic analysis (LSA). Honkela et al. (2010) analyzed word contexts
in text corpora. ICA gave more distinct features reflecting linguistic categories
than LSA. We apply here CTA to this kind of context-word data. The purpose
is to see what kind of inter-relationships CTA identifies between the latent
categories.

4.3.1 Methods

We constructed the context-word data as in (Honkela et al., 2010). First,
the most frequent T = 200, 000 words were collected from 51, 126 Wikipedia
articles written in English; these are called “collected words” in what follows.
Next, we listed the context words occurring among the two words before or
two words after each collected word and then took the most frequent 1, 000
words. For each pair of collected and context word, we computed the joint
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Fig. 12 Latent representations of (a) languages, (b) colors, (c) late 1900’s and (d) late
1800’s. Each plot shows a column of the matrix S. The columns are 60 dimensional vectors
which contain the activations of the latent categories.

frequency, and organized the values into a matrix Y of size 1, 000 by 200, 000.
Finally, we obtained the context-word matrix X = (x(1),x(2), . . . ,x(T )) by
transforming each element of Y as xi(t) = log(yi,t + 1).

As preprocessing, we made the mean of each row of X zero, and stan-
dardized its variance to one. Then, the data was whitened by PCA, and the
dimension of the data was reduced from 1, 000 to 60. Unlike in the exper-
iments of natural images and outputs of complex cells, we assume here an
one-dimensional topography and estimate W as described in Section 2.6. Af-
ter the estimation, the context-word data can be represented as X = AS
where S is a 60 by 200, 000 category-word matrix. Note that in the context of
the text data, we call the rows in S “categories”.

To quantify if the words in each category are similar to those in the same
and adjacent category, we compute a similarity metric between two words us-
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Table 2 Two examples of a topographic ordering between three categories. Denoting the
k-th row of the matrix S by Sk, the words with the top ten absolute values of a Sk are
shown.

Example 1: Number Example 2: Media
S7 S8 S9 S27 S28 S29

hours few 6 published marvel band’s
week several 3 reports comic album
month already 4 report comics pop
weeks various 13 review fantasy albums
days have 16 articles batman solo

months numerous 8 detailed x-men band
day frequently 21 newspaper manga rock
hour two 23 journal fiction songs
year eight 11 fiction spider-man blues

summer many 32 books superman punk

ing WordNet (Miller, 1995; Fellbaum, 1998) and the natural language toolkit
(NLTK) (Bird et al., 2009). WordNet is a large lexical database where words
are assigned to sets of synonyms (synsets), each expressing a lexicalized con-
cept (Miller, 1995). Since WordNet contains a network of synsets, one can
compute the similarity between two words based on simple measures, e.g.,
the distance between synsets. For the computation of the similarity, first, we
picked the top 40 words in each category, that is the words with the largest
|si(t)|. Then, we computed similarities between all possible combinations of
words within categories and between adjacent ones. The words which are not
assigned to synsets were omitted from this analysis. In addition, categories
in which all the top 40 words had no synsets were omitted.6 To compute the
similarity, we used the algorithm path similarity in NLTK which is based on
the shortest path. When words had more than two synsets, we computed sim-
ilarities with all possible combinations of synsets and selected the maximum
value. As a baseline, we computed similarities to 1, 600 pairs of words which
were randomly selected from 200, 000 “collected words”.

4.3.2 Results

We first show examples of latent representations of words (columns of S).
In Figure 12(a), latent representations of the names of four languages peak
at the same category and show large responses around the peak. A similar
property can be observed for the colors in Figure 12(b). Honkela et al. (2010)
obtained similar results: semantically similar words tend to have similar latent
representations. Another interesting representation is found for numbers of
years. Numbers for the late 1900’s have a strong negative peak at category
11 and a positive peak at category 42 (Figure 12(c)), while the late 1800’s

6 For example, there were no synsets in the categories consisting of numbers, such as “the
late 1900’s” and “the late 1800’s” in Figure 12(c) and (d).
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Table 3 Another two examples of a topographic ordering between three categories. “un-
dergrad.” in S38 is an abbreviation of “undergraduate”.

Example 3: Job titles and Names Example 4: Politics and Education
S31 S32 S33 S36 S37 S38

actress actor minister minister constitution graduate
singer scott deputy politician constitutional education
lord smith prime government parliament sciences
actor jr ali parliament courts engineering

songwriter haward appointed poet federal undergrad.
governor allen elected troops court medical
musician lee ahmed election senate faculty
chairman johnson pierre citizens legislative institute
secretary anthony mohammad actress law school
naval wilson singh party supreme science

have positive peak at category 42 only (Figure 12(d)). As another example,
we found semantic categories for American states (results are not shown.).

Regarding the relation between categories, CTA finds topographic repre-
sentations where semantically similar categories are often near to each other
(Table 2 and Table 3). Categories S7 (7-th row of S), S8 and S9, represent
units of time, “quantifiers” and roman numerals, respectively (left panel in
Table 2). Another topographic order is for categories related to mass media
(right panel in Table 2). Job titles and names are close to each other (left
panel in Table 3), we found that categories for political and educational words
are close to each other as well (right panel in Table 3).

To quantify how similar words within or between categories are, we com-
puted the similarities between words as described above. Figure 13 shows the
mean of the top 30 similarity values at each category7, and the categories
are sorted in descending order for visualization. For the baseline, we first per-
formed 1, 000 times runs using pairs of randomly chosen words, and then com-
puted the similarity as done above at each run. The baseline in Figure 13 is
the mean of those 1, 000 runs. In the figure, we presented two cases of results:
(a-1) and (b-1) depict the results for the best CTA run in the sense of having
the largest value of the objective function, while (a-2) and (b-2) are for the
worst CTA run. In total, we performed nine runs with different random initial
conditions. For the similarities within categories (Figure 13(a-1) and (a-2)),
all are higher than the baseline similarity for random words. This means that
CTA identifies semantically meaningful categories. Figure 13(b-1) and (b-2)
clearly indicate that adjacent categories in CTA tend to contain similar words.
Thus, CTA not only identifies semantically meaningful categories, but further-
more, it arranges them so that adjacent categories include semantically similar
words.

We performed the same experiment and analysis for TICA. The best run
results are shown in Figure 13, too. Figure 13(a) shows that CTA and TICA

7 Some categories, which have less than 30 similarity values, were also omitted because
the algorithm could not define the similarity for some pairs of synsets.
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Fig. 13 Mean of top 30 similarity values (a) within categories and (b) between adjacent
categories. For visualization, categories are sorted in descending order. (a-1) and (b-1) depict
the best CTA and best TICA run in the sense of each objective function; (a-2) and (b-2) are
for the worst CTA and best TICA run. RAND is the mean similarity for pairs of randomly
selected words from the 200, 000 collected words. For further details, we refer to the text
body.

have almost the same curves for similarity values within categories. However,
for CTA, the curve for the similarities between adjacent categories is typically
higher than for TICA (Figure 13(b)). We performed one sided t-tests to each
data in the two curves of Figure 13(b). The null hypothesis of the test is that
µCTA is less than µTICA where µCTA denotes the mean of the points forming
the CTA curve in Figure 13(b), and µTICA denotes the mean for the TICA
curve. Note that we did not test if the CTA curve itself is higher than the TICA
one because the points in Figure 13 are sorted only for visualization and thus,
there is no particular order-relationship between the points in the two curves.
For Figure 13(b-1) and (b-2), the p-values are 0.045 and 0.162, respectively.
Thus, in the best result for CTA, the difference is statistically significant at
0.05 level (Figure 13(b-1)). Even in the worst case, the performance of CTA
seems intuitively better although the difference is not statistically significant
(Figure 13(b-2)). Therefore, we conclude that CTA identifies a better topog-
raphy for text data as well.
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5 Discussion

First, we summarize the connections between CTA and TICA. Then, we dis-
cuss the connection to other related work.

5.1 Connection to Topographic Independent Component Analysis

Section 2 showed that TICA and CTA are closely connected. We see their
source models as special instances of the generative model (2), or of the dis-
tribution in (15). The distribution (16) which we used to define the CTA
objective function is obtained from (15) by fixing the parameters ai = 1,
bi = 1 and ϱi = −1 for all i. Ideally, we would estimate all these parameters.
This is however difficult because we do not know the analytical expression of
the partition function in (15). Therefore, we had to leave this challenge to
future work. A possible approach is to use score matching (Hyvärinen, 2006)
or noise-contrastive estimation (Gutmann and Hyvärinen, 2012).

The foremost difference between CTA and TICA is the additional assump-
tion of linear correlations in the source vector s. The sensitivity to linear
correlation improved the topography estimations on artificial data as well as
on real data as discussed in Section 3.2.2 and Section 4. A drawback of this
sensitivity is that the identifiability of CTA becomes worse than ICA or TICA
when the sources have no linear correlations (Figure 6). To fix this drawback,
we should estimate the amount of linear correlations. This could be achieved
by estimating the ϱi, which is, as mentioned above, a topic that we had to
leave to future work

5.2 Connection to Other Related Work and Possible Application

Structured sparsity is a concept related to topographic analysis. Mairal et al.
(2011) applied dictionary learning on natural images using structured sparsity
and the results were similar to TICA. The main difference is that they did not
learn linearly correlated components like CTA. As discussed above, incorpo-
rating linear correlation can have advantages in topography estimation.

For natural images, Osindero et al. (2006) proposed another energy-based
model which has an objective very similar to TICA, and produces similar
results on natural images. Again, the difference to our method is that lin-
ear correlations between components are not explicitly modeled. Their model
allows for overcomplete bases, which by necessity introduces some linear corre-
lations. But it seems that their model still tries to minimize linear correlations
instead of explicitly allowing them.

For the outputs of complex cells (Hoyer and Hyvärinen, 2002) first dis-
covered long contours by applying a non-negative sparse coding method to
the data. Hyvärinen et al. (2005) applied ICA to the outputs with multiple
frequency bands and found long broadband contours. Comparing with our



Correlated Topographic Analysis 29

results, the main difference is the topography of the estimated features: in
Figure 9(a), similar features are close to each other, while they are randomly
organized in the work cited above. The reason is that the previously used
methods assume that the components are statistically independent. In addi-
tion, the end-stopping behavior that emerges for CTA was not seen in previous
work.

For the results of text data, Honkela et al. (2010) applied ICA to the same
kind of word data. Categories similar to ours were learned. Since Honkela and
colleagues used ICA, there were no relationships between the categories. In
contrast to their results, our method estimates a topographic representation
where nearby categories include semantically similar words.

We have focused on learning data representations in this paper. CTA might
also be useful for engineering applications. Recently, Kavukcuoglu et al. (2009)
proposed an architecture for image recognition by creating a new feature
through a topographic map which is learned by a method similar to TICA.
Hence, we would expect that CTA is equally applicable in such tasks, with
its additional sensitivity to linear correlations possibly being an advantage.
However, such a study is out of scope of this paper, and we leave it to future
work.

6 Conclusion

We proposed correlated topographic analysis (CTA) which is an extension
of ICA to estimate the ordering (topography) of correlated components. In
the proposed method, nearby components si are allowed to have linear and
energy correlations; far-away components are as statistically independent as
possible. In previous work, only higher order correlations were introduced.
Our method generalizes those methods: if either linear or energy correlations
in the components are present, CTA can estimate the topography. In addition,
since optimization by gradient methods tends to get stuck in local maxima,
we proposed a three-step optimization method which dramatically improved
topography estimation.

Besides validating the properties of CTA using artificial data, we applied
CTA to three kinds of real data sets: natural images, outputs of simulated
complex cells, and text data. For natural images, similar basis vectors were
close to each other, and we found that most basis vectors represented edges,
not bars. In the experiment using the outputs of simulated complex cells, new
kinds of higher-order features emerged and, moreover, similar features were
systematically organized on the lattice. Finally, we showed for text data that
CTA identifies semantic categories and orders them so that adjacent categories
are connected by the semantics of the words which they represent.
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A An Upper Bound of the Linear and Energy Correlation
Coefficient

The linear correlation coefficient ρlinsi,sj for si and sj reveals another relationship of linear

correlations in s and z as

∣∣∣ρlinsi,sj ∣∣∣ =
∣∣∣∣∣∣∣

E{sisj}√
E{s2i }E{s2j}

∣∣∣∣∣∣∣ =
E{σiσj}√

E{σ2
i }E{σ2

j }

∣∣∣∣∣∣∣
E{zizj}√

E{z2i }E{z2j }

∣∣∣∣∣∣∣︸ ︷︷ ︸∣∣∣∣ρlinzi,zj

∣∣∣∣

≤
∣∣∣ρlinzi,zj ∣∣∣ , (34)

where ρlinzi,zj denotes the linear correlation coefficient for zi and zj , and the Cauchy-Schwartz

inequality, E{σiσj}2 ≤ E{σ2
i }E{σ2

j }, was applied.
The energy correlation coefficient ρenesi,sj

for si and sj also has an upper bound:

ρenesi,sj
=

cov(s2i , s
2
j )√

E{(s2i − E{s2i })2}E{(s2j − E{s2j})2}

<
1

3
ρeneσi,σj

+
(
ρlinzi,zj

)2
, (35)

where ρeneσi,σj
is the correlation coefficient of the squares of σi and σj . Inequality (35) is

proven below. The energy correlation of si and sj is defined by

ρenesi,sj
=

cov(s2i , s
2
j )√

E{(s2i − E{s2i })2}E{(s2j − E{s2j})2}
,

=
E{σ2

i σ
2
j }E{z2i z2j } − E{σ2

i }E{σ2
j }E{z2i }E{z2j }√

(E{σ4
i }E{z4i } − E{σ2

i }2E{z2i }2)(E{σ4
j }E{z4j } − E{σ2

j }2E{z2j }2)
,

=
cov(σ2

i , σ
2
j )√

(3E{σ4
i } − E{σ2

i }2)(3E{σ4
j } − E{σ2

j }2)
+

2E{σ2
i σ

2
j }
(
ρlinzi,zj

)2
√

(3E{σ4
i } − E{σ2

i }2)(3E{σ4
j } − E{σ2

j }2)
,

(36)

where we used the two formulas valid for Gaussian variables with zero mean, E{z2i z2j } =

E{z2i }E{z2j }+ 2E{zizj}2 and E{z4i } = 3E{z2i }2 which are proven by Isserlis’ theorem (Is-

serlis, 1918; Michalowicz et al., 2009). The first term in (36) gives the following inequality,

cov(σ2
i , σ

2
j )√

(3E{σ4
i } − E{σ2

i }2)(3E{σ4
j } − E{σ2

j }2)
<

1

3
ρeneσi,σj

, (37)
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where 3E{σ4
i }−E{σ2

i }2 > 3(E{σ4
i }−E{σ2

i }2) = 3E{(σ2
i −E{σ2

i })2}. For the second term
in (36), first, using Jensen’s inequality, E{σ2

i }2 ≤ E{σ4
i },

2E{σ2
i σ

2
j }
(
ρlinzi,zj

)2
√

(3E{σ4
i } − E{σ2

i }2)(3E{σ4
j } − E{σ2

j }2)
≤

E{σ2
i σ

2
j }√

E{σ4
i }E{σ4

j }

(
ρlinzi,zj

)2
. (38)

By applying the Cauchy-Schwartz inequality, E{σ2
i σ

2
j }2 ≤ E{σ4

i }E{σ4
j }, to the above in-

equality, the second term in (36) is bounded by the square of the linear correlation coefficient
in zi and zj :

2E{σ2
i σ

2
j }
(
ρlinzi,zj

)2
√

(3E{σ4
i } − E{σ2

i }2)(3E{σ4
j } − E{σ2

j }2)
≤
(
ρlinzi,zj

)2
. (39)

We obtain (35) from (37) and (39).

B Calculations for Equation (11)

Here, we describe the details for obtaining (11). The equation before (11) is

p(s|v,u;λ) =
|Λ|1/2

(2π)d/2

d∏
i=1

√
ui−1 + ui + vi exp

[
−
1

2

{
(ui−1 + ui + vi)s

2
i

+ 2λi

√
(ui−1 + ui + vi)(ui + ui+1 + vi+1)sisi+1

}]
. (40)

This equation can be rewritten as

p(s|v,u;λ) =
|Λ|1/2

(2π)d/2
exp

−
1

2


d∑

i=1

(ui−1 + ui + vi)s
2
i︸ ︷︷ ︸

g(s,u,v)

+ 2

d∑
i=1

λi

√
(ui−1 + ui + vi)(ui + ui+1 + vi+1)sisi+1

}]
×
(

d∏
i=1

√
ui−1 + ui + vi

)
.

(41)

We expand g(s,u,v) as follows:

g(s,u,v)

=
d∑

i=1

vis
2
i + (ud + u1)s

2
1 + (u1 + u2)s

2
2 + · · ·+ (ud−2 + ud−1)s

2
d−1 + (ud−1 + ud)s

2
d,

(42)

where the ring like boundary is applied. By rewriting the terms behind the first summation
in (42) with respect to each ui, we have

g(s,u,v)

=
d∑

i=1

vis
2
i + (s21 + s22)u1 + (s22 + s23)u2 + · · ·+ (s2d−1 + s2d)ud−1 + (s2d + s21)ud,

=
d∑

i=1

vis
2
i + (s2i + s2i+1)ui. (43)
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We obtain Equation (11) by inserting (43) into (41),

p(s|v,u;λ) =
|Λ|1/2

(2π)d/2
exp

[
−
1

2

{
d∑

i=1

vis
2
i + (s2i + s2i+1)ui

+ 2

d∑
i=1

λi

√
(ui−1 + ui + vi)(ui + ui+1 + vi+1)sisi+1

}]
×
(
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i=1

√
ui−1 + ui + vi

)
,

=
|Λ|1/2

(2π)d/2
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i=1

√
ui−1 + ui + vi exp

[
−
1

2

{
vis

2
i + (s2i + s2i+1)ui

+ 2λi

√
(ui−1 + ui + vi)(ui + ui+1 + vi+1)sisi+1

}]
. (44)

C Deriving the Approximation p̃(s; ϱ, a,b)

In this appendix, we give the detailed description of how to derive the probability distribution
p̃(s;ϱ,a,b) in (15).

To obtain p̃(s;ϱ,a,b), we have to calculate the integral

p̃(s;ϱ,a,b) =

∫ ∞

0

∫ ∞

0
p̃(s|v,u;ϱ)p(v,u;a,b)dvdu,

∝
d∏

i=1

∫ ∞

0
v
−3/2
i exp

{
−
1

2

(
s2i vi +

ai

vi

)}
dvi

×
d∏

i=1

∫ ∞

0
u
−3/2
i exp

[
−
1

2

{
(s2i + s2i+1 + 2ϱisisi+1)ui +

bi

ui

}]
dui. (45)

To calculate this integral, we use the following formula (Andrews and Mallows, 1974),

∫ ∞

0
exp

{
−
1

2

(
α2y2 +

β2

y2

)}
dy =

( π

2α2

)1/2
exp(−|αβ|). (46)

By change of variable x = y−2,

∫ ∞

0
x−3/2 exp

{
−
1

2

(
β2x+

α2

x

)}
dx =

(
2π

α2

)1/2

exp(−|αβ|). (47)

The formula (47) gives (15) as

p̃(s;ϱ,a,b) ∝
d∏

i=1

exp
(
−
√
ai|si| −

√
bi

√
s2i + s2i+1 + 2ϱisisi+1

)
. (48)

D Optimizing Components on a Two-Dimensional Lattice

We first present the optimization algorithm. Then, we demonstrate its effectiveness using
natural image data.
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Fig. 14 The flow of the optimization method for components on a two-dimensional lattice.
Black solid arrows represent the direction of the optimization, and gray dashed arrows
represent the statistical dependency to the already optimized components to be evaluated
in each phase. Grayed-out cells depict the components already optimized in the former
phases.

D.1 Algorithm

Here, we describe the optimization method on a two-dimensional lattice. Each component
is denoted by si,j for i = 1, . . . , dx and j = 1, . . . , dy , where dx and dy represent the size
of the lattice along with horizontal and vertical directions, respectively. For simplicity, we
suppose that dy ≤ dx. In the method, the only difference to the optimization method on an
one-dimensional lattice is Step 2 and the objective function J in Step 3. Since the objective
function in Step 3 is replaced by (29), we explain the algorithm in Step 2 below.

The algorithm is a straightforward extension of the case of an one-dimensional lattice.
The key idea is to optimize the order and signs of components alternately along the horizontal
and vertical directions. We call each such optimization a “phase” in the algorithm. A sketch
of the method is depicted in Figure 14. In each phase, each optimization problem reduces
to that of the one-dimensional lattice. Therefore, we can expect to apply the method of
the one-dimensional lattice with small modifications. In fact, the modifications between
the methods of the one- and two-dimensional lattice are twofold: (1) one cannot use the
indices selected in the former phases and (2) components are optimized at each phase while
evaluating dependencies to the components already optimized in the former phases. For
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example, the problem at phase 3 can be formulated as

k∗2,j , c
∗
2,j = arg max

k2,j ,c2,j
L1 + L2, (49)

L1 = −
1

T

T∑
t=1

dx∑
l=2

G(c2,lsk2,l
(t)− c2,l+1sk2,l+1

(t)), (50)

L2 = −
1

T

T∑
t=1

 dx∑
l=2

1∑
m=−1

{
G(c2,lsk2,l

(t)− s∗1,l+m(t))
}
+G(c2,2sk2,2

(t)− s∗2,1(t))

+G(c2,2sk2,2
(t)− s∗3,1(t)) +G(c2,2sk2,dx

(t)− s∗3,1(t))
]
, (51)

where j = 2, 3, . . . , dx and s∗i,j(t) = c∗i,jW
(1)
k∗
i,j

x(t), which is an already optimized component

in former steps. k2,j in (49) must be selected from the remaining index set {2, . . . , dxdy} \
{k∗1,2, . . . , k∗1,dx , k

∗
2,1, . . . , k

∗
dy ,1

}. The brief description of the algorithm is as follows:

Algorithm 3: Finding an optimal order and signs on a two-dimensional lattice

Input: ICA components, s(1)(1), s(1)(2), . . . , s(1)(T ).

1. Assumption: dy ≤ dx (or dx ≤ dy)
2. Initialization: c1,1 = 1, k1,1 = 1 and I = {2, 3, . . . , dydx}.
3. Repeat to find optimal indices and signs at each phase from n = 1 to n = dy (or n = dx):

(a) Apply the algorithm 2 with the modifications given above to the components on the
n-th row (or column) and obtain the optimal indices from I and signs.

(b) Update the components on the n-th row by using the optimal indices and signs.
(c) Update I by removing the obtained optimal indices.
(d) Apply the algorithm 2 with the modifications given above to the components on the

n-th column (or row) and obtain the optimal indices from I and signs.
(e) Update the components on the n-th column by using the optimal indices and signs.
(f) Update I by removing the obtained optimal indices.

Output: the optimal indices (order) and signs.

MATLAB code can be obtained at http://www.cs.helsinki.fi/u/ahyvarin/code/cta/.

D.2 Effectiveness of the Optimization Method on Natural Images

We compare results for natural images obtained by the proposed optimization method and
the conjugate gradient method only. The experimental methods are described in Section 4.1.

Basis vectors estimated by the conjugate gradient method only are presented in Fig-
ure 15. It seems that nearby basis vectors are less similar than those in Figure 7. The scatter
plots of the Gabor parameters shown in Figure 16 reveal that the spatial locations of adja-
cent basis vectors in Figure 15 have weaker correlations than those in Figure 8. Furthermore,
the objective function from the proposed optimization method is larger than the one from
the conjugate gradient method only:

– proposed method: J(W) = −233.331
– conjugate gradient method: J(W) = −233.623

Thus, the proposed optimization method on a two-dimensional lattice works better than the
conjugate gradient method only.
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Fig. 15 Estimated basis vectors from natural images using the conjugate gradient method
only.

Fig. 16 Scatter plots of Gabor parameters for the pairs of adjacent basis vectors in Fig-
ure 15.


