416 research outputs found

    Dye lasing in optically manipulated liquid aerosols

    Get PDF

    Dye lasing in optically manipulated liquid aerosols

    Get PDF
    We report lasing in airborne, rhodamine B-doped glycerol-water droplets with diameters ranging between 7.7 and 11.0 mu m, which were localized using optical tweezers. While being trapped near the focal point of an infrared laser, the droplets were pumped with a Q-switched green laser. Our experiments revealed nonlinear dependence of the intensity of the droplet whispering gallery modes (WGMs) on the pump laser fluence, indicating dye lasing. The average wavelength of the lasing WGMs could be tuned between 600 and 630 nm by changing the droplet size. These results may lead to new ways of probing airborne particles, exploiting the high sensitivity of stimulated emission to small perturbations in the droplet laser cavity and the gain medium

    A systematic study on luminescence characterization of lanthanide-doped BeO ceramic dosimeters

    Get PDF
    This work aimed to investigate the luminescent characteristics of lanthanide and alkali metal ion-doped BeO ceramic pellets prepared using the co-precipitation synthesis technique for Optically Stimulated Luminescence (OSL) dosimetry applications. In this study, BeO nano phosphor was doped with lanthanides (Ln(3+)) Eu3+, Ce3+, Nd3+, Yb3+, Er3+, Gd3+, Tb3+, Tm3+, Sm3+, Pr3+, and Dy3+ and co-doped with Na+, and characterized using radioluminescence (RL), thermoluminescence (TL) and OSL techniques. Lanthanides introduced as dopants not only affected the luminescence centers but also changed the luminescence mechanisms. The RL spectra of lanthanide-doped BeO samples showed that they mostly possess dominant emissions in the narrow bands (between 200 and 450 nm) in the UV region. OSL emission bands were found to be located between similar to 250 and similar to 390 nm. The results have demonstrated that the incorporation of appropriate Ln(3+) and alkali metal ion dopants and their optimum concentrations enhanced the luminescence intensity of undoped BeO. The studied BeO:Na-5%,Ce-0.01%,Er-0.01%, BeO:Na-5%,Ce-0.005%,Tb-0.05%, and BeO:Na-5%,Ce-0.01%,Dy-0.01% ceramics can be regarded as highly sensitive controllable luminescence dosimeters. The range of sensitivity of those samples is such that their most probable use in clinical therapy dosimetry rather than in health physics. (C) 2021 Elsevier B.V. All rights reserved

    Selection of the solvent and extraction conditions for maximum recovery of antioxidant phenolic compounds from coffee silverskin

    Get PDF
    The extraction of antioxidant phenolic compounds from coffee silverskin (CS) was studied. Firstly, the effect of different solvents (methanol, ethanol, acetone, and distilled water) on the production of antioxidant extracts was evaluated. All the extracts showed antioxidant activity (FRAP and DPPH assays), but those obtained with methanol and ethanol had significantly higher (p < 0.05) DPPH inhibition than the remaining ones. Due to the lower toxicity, ethanol was selected as extraction solvent, and further experiments were performed in order to define the solvent concentration, solvent/solid ratio, and time to maximize the extraction results. The best condition to produce an extract with high content of phenolic compounds (13 mg gallic acid equivalents/g CS) and antioxidant activity [DPPH = 18.24 μmol Trolox equivalents/g CS and FRAP = 0.83 mmol Fe(II)/g CS] was achieved when using 60 % ethanol in a ratio of 35 ml/g CS, during 30 min at 60–65 °C.This work was supported by the Portuguese Foundation for Science and Technology (FCT). The authors gratefully acknowledge Teresa Conde, student of Biological Engineering, for the help and interest in this work

    Synthesis of an ordered mesoporous carbon with graphitic characteristics and its application for dye adsorption

    Get PDF
    An ordered mesoporous carbon (OMC) was prepared by a chemical vapor deposition technique using liquid petroleum gas (LPG) as the carbon source. During synthesis, LPG was effectively adsorbed in the ordered mesopores of SBA-15 silica and converted to a graphitic carbon at 800 °C. X-ray diffraction and nitrogen adsorption/desorption data and high-resolution transmission electron microscopy (HRTEM) of the OMC confirmed its ordered mesoporous structure. The OMC was utilized as an adsorbent in the removal of dyes from aqueous solution. A commercial powder activated carbon (AC) was also investigated to obtain comparative data. The efficiency of the OMC for dye adsorption was tested using acidic dye acid orange 8 (AO8) and basic dyes methylene blue (MB) and rhodamine B (RB). The results show that adsorption was affected by the molecular size of the dye, the textural properties of carbon adsorbent and surface-dye interactions. The adsorption capacities of the OMC for acid orange 8 (AO8), methylene blue (MB) and rhodamine B (RB) were determined to be 222, 833, and 233 mg/g, respectively. The adsorption capacities of the AC for AO8, MB, and RB were determined to be 141, 313, and 185 mg/ g, respectively. The OMC demonstrated to be an excellent adsorbent for the removal of MB from wastewater.Web of Scienc

    Dentin Sialophosphoprotein (DSPP) Gene-Silencing Inhibits Key Tumorigenic Activities in Human Oral Cancer Cell Line, OSC2

    Get PDF
    We determined recently that dentin sialophosphoprotein (DSPP), a member of the SIBLING (Small integrin-binding ligand N-linked glycoproteins) family of phosphoglycoproteins, is highly upregulated in human oral squamous cell carcinomas (OSCCs) where upregulation is associated with tumor aggressiveness. To investigate the effects of DSPP-silencing on the tumorigenic profiles of the oral cancer cell line, OSC2, short-hairpin RNA (shRNA) interference was employed to silence DSPP in OSC2 cells.Multiple regions of DSPP transcript were targeted for shRNA interference using hDSP-shRNA lentiviral particles designed to silence DSPP gene expression. Control shRNA plasmid encoding a scrambled sequence incapable of degrading any known cellular mRNA was used for negative control. Following puromycin selection of stable lines of DSSP-silenced OSC2 cells, phenotypic hallmarks of oral carcinogenesis were assayed by western blot and RT-PCR analyses, MTT (cell-viability), colony-formation, modified Boyden-Chamber (migration and invasion), and flow cytometry (cell-cycle and apoptosis) analyses. DSPP-silenced OSC2 cells showed altered cell morphology, reduced viability, decreased colony-formation ability, decreased migration and invasion, G0/G1 cell-cycle arrest, and increased tumor cell sensitivity to cisplatin-induced apoptosis. Furthermore, MMP-2, MMP-3, MMP-9, VEGF, Ki-67, p53, and EGFR were down-regulated. There was a direct correlation between the degree of DSPP-silencing and MMP suppression, as indicated by least squares regression: MMP-2 {(y = 0.850x, p<0.001) (y = 1.156x, p<0.001)}, MMP-3 {(y = 0.994x, p<0.001) (y = 1.324x, p = 0.004)}, and MMP-9 {(y = 1.248x, p = 0.005, y = 0.809, p = 0.013)}.DSPP-silencing in OSC2 cell decreased salient hallmarks of oral tumorigenesis and provides the first functional evidence of a potential key role for DSPP in oral cancer biology. The down-regulation of MMP-2, MMP-3, MMP-9, p53 and VEGF in DSPP-silenced OSC2 cells provides a significant functional/molecular framework for deciphering the mechanisms of DSPP activities in oral cancer biology

    Computational Identification and Analysis of the Key Biosorbent Characteristics for the Biosorption Process of Reactive Black 5 onto Fungal Biomass

    Get PDF
    The performances of nine biosorbents derived from dead fungal biomass were investigated for their ability to remove Reactive Black 5 from aqueous solution. The biosorption data for removal of Reactive Black 5 were readily modeled using the Langmuir adsorption isotherm. Kinetic analysis based on both pseudo-second-order and Weber-Morris models indicated intraparticle diffusion was the rate limiting step for biosorption of Reactive Black 5 on to the biosorbents. Sorption capacities of the biosorbents were not correlated with the initial biosorption rates. Sensitivity analysis of the factors affecting biosorption examined by an artificial neural network model showed that pH was the most important parameter, explaining 22%, followed by nitrogen content of biosorbents (16%), initial dye concentration (15%) and carbon content of biosorbents (10%). The biosorption capacities were not proportional to surface areas of the sorbents, but were instead influenced by their chemical element composition. The main functional groups contributing to dye sorption were amine, carboxylic, and alcohol moieties. The data further suggest that differences in carbon and nitrogen contents of biosorbents may be used as a selection index for identifying effective biosorbents from dead fungal biomass
    • …
    corecore