598 research outputs found

    Single minimum incision endoscopic radical nephrectomy for renal tumors with preoperative virtual navigation using 3D-CT volume-rendering

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Single minimum incision endoscopic surgery (MIES) involves the use of a flexible high-definition laparoscope to facilitate open surgery. We reviewed our method of radical nephrectomy for renal tumors, which is single MIES combined with preoperative virtual surgery employing three-dimensional CT images reconstructed by the volume rendering method (3D-CT images) in order to safely and appropriately approach the renal hilar vessels. We also assessed the usefulness of 3D-CT images.</p> <p>Methods</p> <p>Radical nephrectomy was done by single MIES via the translumbar approach in 80 consecutive patients. We performed the initial 20 MIES nephrectomies without preoperative 3D-CT images and the subsequent 60 MIES nephrectomies with preoperative 3D-CT images for evaluation of the renal hilar vessels and the relation of each tumor to the surrounding structures. On the basis of the 3D information, preoperative virtual surgery was performed with a computer.</p> <p>Results</p> <p>Single MIES nephrectomy was successful in all patients. In the 60 patients who underwent 3D-CT, the number of renal arteries and veins corresponded exactly with the preoperative 3D-CT data (100% sensitivity and 100% specificity). These 60 nephrectomies were completed with a shorter operating time and smaller blood loss than the initial 20 nephrectomies.</p> <p>Conclusions</p> <p>Single MIES radical nephrectomy combined with 3D-CT and virtual surgery achieved a shorter operating time and less blood loss, possibly due to safer and easier handling of the renal hilar vessels.</p

    Improving cultivation of cowpea in West Africa

    Get PDF
    Cowpea [Vigna unguiculata (L.) Walp.] is a legume crop of vital importance to the livelihoods of millions of people in West and Central Africa (WCA). It provides a nutritious grain and a less expensive source of protein for both rural and urban poor consumers (Inaizumi et al., 1999). It can be grown and harvested in as little as 60–80 days. This enables households to harvest leaves and grains for consumption or sale during the ‘hungry season’ when grain reserves from the previous cereal harvests have been depleted and current crops are not ready for harvest. Most of the world’s cowpea (>90) is grown in sub-Saharan Africa, most of which is in West Africa particularly in Nigeria and Burkina Faso. Over 12.61 million ha are grown to cowpea worldwide, with an annual grain production of about 5.59 million tons (FAO, 2014). Of this amount, Africa accounts for 94% of grain production. Nigeria is the largest cowpea producer in the world and accounts for over 2.5 million tons grain production from an estimated 4.9 million ha (FAO, 2014). Other major producers in West Africa are Mali, Niger and Senegal. Cowpea cultivation is mainly under traditional systems and cowpea grain yields in farmers’ fields are low especially in the West African sub-region (0.025–0.3 t ha−1). This is caused by severe attacks of pest complexes, diseases, low soil fertility, drought, inadequate planting systems, inappropriate cultivars and lack of inputs (Ajeigbe et al., 2010a). In addition to biotic and abiotic stresses, existing planting practices limit crop yields. Despite the availability of Striga and disease-resistant cowpea cultivars, grain yields on farmers’ fields are still low. However, on-station and researcher-managed plot yields are high and encouraging. Grain yields ranging from 0.5 to 2.76 t ha−1 have been reported in sole crop (Ajeigbe et al., 2005, 2008), whereas grain yields ranging from 0.37 to 1.27 t ha−1 have been reported in intercrop in the savannahs of Africa (Ajeigbe et al., 2005, 2010b). Yield potential assumes unconstrained crop growth and adequate management that avoids limitations from nutrient deficiencies; inadequate planting systems and water stress and reductions from weeds, pests and diseases (Evans and Fisher, 1999). Considering the large differences between farmers’ yields (0.3 t ha−1) and experimental station yields (1.5–2.5 t ha−1), potential for on-farm yield increase in the region is high. This has stimulated interest in agronomic practices that could enhance crop yields. Some of the agronomic practices that may increase cowpea productivity are optimal plant population, appropriate planting date, nutrient management, integrated pest management and suitable cropping system

    Effects of plant density on the performance of cowpea in Nigerian savannas

    Get PDF
    Grain yields of cowpea [Vigna unguiculata (L.) Walp.] in the Nigerian savannas are low even with the cultivation of improved varieties. The recommended spacing for cowpea is 75 × 20 cm with two seeds planted per stand. This corresponds to plant population of 133333 plants ha−1, which may not be sufficient for optimal cowpea yield. Field experiments were conducted to determine plant density effects on cowpea performance in the Northern Guinea and the Sudan savannas of Nigeria and also to determine if genotypes varied in their response to plant density. Four cowpea varieties with contrasting maturity duration were planted in single, double and triple rows on ridges spaced 75 cm apart to achieve corresponding densities of 133333, 266666 and 400000 plants ha−1, respectively. Plant densities of 266666 and 400000 plants ha−1 gave higher crop performance in terms of light interception, biomass production, yield and yield components for all cowpea varieties. Yield increases were related largely to increased pod and seed production but the effect of seed size on yield was relatively minor. Our results provide evidence that the current density of 133333 plants ha−1 used by farmers is not optimum for cowpea production. Smallholder farmers can increase cowpea grain and fodder yields if they use a density of 266666 plants ha−1 in cowpea cultivation. Further yield increases when cowpea is planted at 400000 plants ha−1 may not be sufficient to offset the cost of seed

    Increased serum hepcidin-25 level and increased tumor expression of hepcidin mRNA are associated with metastasis of renal cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepcidin has an important role in iron metabolism. We investigated whether hepcidin was involved in renal cell carcinoma (RCC).</p> <p>Methods</p> <p>We measured serum hepcidin-25 levels in 32 patients by liquid chromatograpy (LC)-mass spectrometry (MS)/MS, and assessed hepcidin mRNA expression in paired tumor and non-tumor tissue samples from the surgical specimens of 53 consecutive patients with RCC by real-time reverse transcription polymerase chain reaction.</p> <p>Results</p> <p>The serum hepcidin-25 level was higher in patients with metastatic RCC than nonmetastatic RCC (<it>P </it>< 0.0001), and was positively correlated with the serum interleukin-6 and C-reactive protein levels (<it>P </it>< 0.001). Expression of hepcidin mRNA was lower in tumor tissues than in non-tumor tissues (<it>P </it>< 0.0001). The serum hepcidin-25 level was not correlated with the expression of hepcidin mRNA in the corresponding tumor tissue specimens from 32 patients. Hepcidin mRNA expression in tumor tissue was correlated with metastatic potential, but not with histological differentiation or tumor stage. Kaplan-Meier analysis showed that over expression of hepcidin mRNA was related to shorter overall survival in RCC patients. Univariate analysis (Cox proportional hazards model) showed that the hepcidin mRNA level was an independent prognostic factor for overall survival.</p> <p>Conclusion</p> <p>Our findings suggest that a high serum hepcidin-25 level may indicate the progression of RCC, and that upregulation of hepcidin mRNA expression in tumor tissue may be related to increased metastatic potential.</p

    Effect of Plant Density on the performance of Cowpea in Nigeria Savannas

    Get PDF
    Grain yields of cowpea [Vigna unguiculata (L.) Walp.] in the Nigerian savannas are low even with the cultivation of improved varieties. The recommended spacing for cowpea is 75 × 20 cm with two seeds planted per stand. This corresponds to plant population of 133333 plants ha−1, which may not be sufficient for optimal cowpea yield. Field experiments were conducted to determine plant density effects on cowpea performance in the Northern Guinea and the Sudan savannas of Nigeria and also to determine if genotypes varied in their response to plant density. Four cowpea varieties with contrasting maturity duration were planted in single, double and triple rows on ridges spaced 75 cm apart to achieve corresponding densities of 133333, 266666 and 400000 plants ha−1, respectively. Plant densities of 266666 and 400000 plants ha−1 gave higher crop performance in terms of light interception, biomass production, yield and yield components for all cowpea varieties. Yield increases were related largely to increased pod and seed production but the effect of seed size on yield was relatively minor. Our results provide evidence that the current density of 133333 plants ha−1 used by farmers is not optimum for cowpea production. Smallholder farmers can increase cowpea grain and fodder yields if they use a density of 266666 plants ha−1 in cowpea cultivation. Further yield increases when cowpea is planted at 400000 plants ha−1 may not be sufficient to offset the cost of seed

    Tumour suppressor microRNA-584 directly targets oncogene Rock-1 and decreases invasion ability in human clear cell renal cell carcinoma

    Get PDF
    BackgroundThe purpose of this study was to identify new tumour suppressor microRNAs (miRs) in clear cell renal cell carcinoma (ccRCC), carry out functional analysis of their suppressive role and identify their specific target genes.MethodsTo explore suppressor miRs in RCC, miR microarray and real-time PCR were performed using HK-2 and A-498 cells. Cell viability, invasion and wound healing assays were carried out for functional analysis after miR transfection. To determine target genes of miR, we used messenger RNA (mRNA) microarray and target scan algorithms to identify target oncogenes. A 3'UTR luciferase assay was also performed. Protein expression of target genes in ccRCC tissues was confirmed by immunohistochemistry and was compared with miR-584 expression in ccRCC tissues.ResultsExpression of miR-584 in RCC (A-498 and 769-P) cells was downregulated compared with HK-2 cells. Transfection of miR-584 dramatically decreased cell motility. The ROCK-1 mRNA was inhibited by miR-584 and predicted to be target gene. The miR-584 decreased 3'UTR luciferase activity of ROCK-1 and ROCK-1 protein expression. Low expression of miR-584 in ccRCC tissues was correlated with high expression of ROCK-1 protein. The knockdown of ROCK-1 by siRNA inhibited cell motility.ConclusionmiR-584 is a new tumour suppressor miR in ccRCC and inhibits cell motility through downregulation of ROCK-1

    Problems in early diagnosis of bladder cancer in a spinal cord injury patient: Report of a case of simultaneous production of granulocyte colony stimulating factor and parathyroid hormone-related protein by squamous cell carcinoma of urinary bladder

    Get PDF
    BACKGROUND: Typical symptoms and signs of a clinical condition may be absent in spinal cord injury (SCI) patients. CASE PRESENTATION: A male with paraplegia was passing urine through penile sheath for 35 years, when he developed urinary infections. There was no history of haematuria. Intravenous urography showed bilateral hydronephrosis. The significance of abnormal outline of bladder was not appreciated. As there was large residual urine, he was advised intermittent catheterisation. Serum urea: 3.5 mmol/L; creatinine: 77 umol/L. A year later, serum urea: 36.8 mmol/l; creatinine: 632 umol/l; white cell count: 22.2; neutrophils: 18.88. Ultrasound: bilateral hydronephrosis. Bilateral nephrostomy was performed. Subsequently, blood tests showed: Urea: 14.2 mmol/l; Creatinine: 251 umol/l; Adjusted Calcium: 3.28 mmol/l; Parathyroid hormone: < 0.7 pmol/l (1.1 – 6.9); Parathyroid hormone-related protein (PTHrP): 2.3 pmol/l (0.7 – 1.8). Ultrasound scan of urinary bladder showed mixed echogenicity, which was diagnosed as debris. CT of pelvis was interpreted as vesical abscess. Urine cytology: Transitional cells showing mild atypia. Bladder biopsy: Inflamed mucosa lined by normal urothelial cells. A repeat ultrasound scan demonstrated a tumour arising from right lateral wall; biopsy revealed squamous cell carcinoma. In view of persistently high white cell count and high calcium level, immunohistochemistry for G-CSF and PTHrP was performed. Dense staining of tumour cells for G-CSF and faintly positive staining for C-terminal PTHrP were observed. This patient expired about five months later. CONCLUSION: This case demonstrates how delay in diagnosis of bladder cancer could occur in a SCI patient due to absence of characteristic symptoms and signs

    A Horizon Study for Cosmic Explorer: Science, Observatories, and Community

    Get PDF
    Gravitational-wave astronomy has revolutionized humanity's view of the universe. Investment in the field has rewarded the scientific community with the first direct detection of a binary black hole merger and the multimessenger observation of a neutron-star merger. Each of these was a watershed moment in astronomy, made possible because gravitational waves reveal the cosmos in a way that no other probe can. Since the first detection of gravitational waves in 2015, the National Science Foundation's LIGO and its partner observatory, the European Union's Virgo, have detected over fifty binary black hole mergers and a second neutron star merger -- a rate of discovery that has amazed even the most optimistic scientists.This Horizon Study describes a next-generation ground-based gravitational-wave observatory: Cosmic Explorer. With ten times the sensitivity of Advanced LIGO, Cosmic Explorer will push the gravitational-wave astronomy towards the edge of the observable universe (z100z \sim 100). This Horizon Study presents the science objective for Cosmic Explorer, and describes and evaluates its design concepts for. Cosmic Explorer will continue the United States' leadership in gravitational-wave astronomy in the international effort to build a "Third-Generation" (3G) observatory network that will make discoveries transformative across astronomy, physics, and cosmology
    corecore