102 research outputs found

    Motion processing with wide-field neurons in the retino-tecto-rotundal pathway

    Get PDF
    The retino-tecto-rotundal pathway is the main visual pathway in non-mammalian vertebrates and has been found to be highly involved in visual processing. Despite the extensive receptive fields of tectal and rotundal wide-field neurons, pattern discrimination tasks suggest a system with high spatial resolution. In this paper, we address the problem of how global processing performed by motion-sensitive wide-field neurons can be brought into agreement with the concept of a local analysis of visual stimuli. As a solution to this problem, we propose a firing-rate model of the retino-tecto-rotundal pathway which describes how spatiotemporal information can be organized and retained by tectal and rotundal wide-field neurons while processing Fourier-based motion in absence of periodic receptive-field structures. The model incorporates anatomical and electrophysiological experimental data on tectal and rotundal neurons, and the basic response characteristics of tectal and rotundal neurons to moving stimuli are captured by the model cells. We show that local velocity estimates may be derived from rotundal-cell responses via superposition in a subsequent processing step. Experimentally testable predictions which are both specific and characteristic to the model are provided. Thus, a conclusive explanation can be given of how the retino-tecto-rotundal pathway enables the animal to detect and localize moving objects or to estimate its self-motion parameters

    Age and Diet Affect Gene Expression Profiles in Canine Liver Tissue

    Get PDF
    BACKGROUND: The liver plays a central role in nutrient and xenobiotic metabolism, but its functionality declines with age. Senior dogs suffer from many of the chronic hepatic diseases as elderly humans, with age-related alterations in liver function influenced by diet. However, a large-scale molecular analysis of the liver tissue as affected by age and diet has not been reported in dogs. METHODOLOGY/PRINCIPAL FINDINGS: Liver tissue samples were collected from six senior (12-year old) and six young adult (1-year old) female beagles fed an animal protein-based diet (APB) or a plant protein-based diet (PPB) for 12 months. Total RNA in the liver tissue was extracted and hybridized to Affymetrix GeneChip® Canine Genome Arrays. Using a 2.0-fold cutoff and false discovery rate <0.10, our results indicated that expression of 234 genes was altered by age, while 137 genes were differentially expressed by diet. Based on functional classification, genes affected by age and/or diet were involved in cellular development, nutrient metabolism, and signal transduction. In general, gene expression suggested that senior dogs had an increased risk of the progression of liver disease and dysfunction, as observed in aged humans and rodents. In particular for aged liver, genes related to inflammation, oxidative stress, and glycolysis were up-regulated, whereas genes related to regeneration, xenobiotic metabolism, and cholesterol trafficking were down-regulated. Diet-associated changes in gene expression were more common in young adult dogs (33 genes) as compared to senior dogs (3 genes). CONCLUSION: Our results provide molecular insight pertaining to the aged canine liver and its predisposition to disease and abnormalities. Therefore, our data may aid in future research pertaining to age-associated alterations in hepatic function or identification of potential targets for nutritional management as a means to decrease incidence of age-dependent liver dysfunction

    Niemann-Pick disease type C

    Get PDF
    Niemann-Pick C disease (NP-C) is a neurovisceral atypical lysosomal lipid storage disorder with an estimated minimal incidence of 1/120 000 live births. The broad clinical spectrum ranges from a neonatal rapidly fatal disorder to an adult-onset chronic neurodegenerative disease. The neurological involvement defines the disease severity in most patients but is typically preceded by systemic signs (cholestatic jaundice in the neonatal period or isolated spleno- or hepatosplenomegaly in infancy or childhood). The first neurological symptoms vary with age of onset: delay in developmental motor milestones (early infantile period), gait problems, falls, clumsiness, cataplexy, school problems (late infantile and juvenile period), and ataxia not unfrequently following initial psychiatric disturbances (adult form). The most characteristic sign is vertical supranuclear gaze palsy. The neurological disorder consists mainly of cerebellar ataxia, dysarthria, dysphagia, and progressive dementia. Cataplexy, seizures and dystonia are other common features. NP-C is transmitted in an autosomal recessive manner and is caused by mutations of either the NPC1 (95% of families) or the NPC2 genes. The exact functions of the NPC1 and NPC2 proteins are still unclear. NP-C is currently described as a cellular cholesterol trafficking defect but in the brain, the prominently stored lipids are gangliosides. Clinical examination should include comprehensive neurological and ophthalmological evaluations. The primary laboratory diagnosis requires living skin fibroblasts to demonstrate accumulation of unesterified cholesterol in perinuclear vesicles (lysosomes) after staining with filipin. Pronounced abnormalities are observed in about 80% of the cases, mild to moderate alterations in the remainder ("variant" biochemical phenotype). Genotyping of patients is useful to confirm the diagnosis in the latter patients and essential for future prenatal diagnosis. The differential diagnosis may include other lipidoses; idiopathic neonatal hepatitis and other causes of cholestatic icterus should be considered in neonates, and conditions with cerebellar ataxia, dystonia, cataplexy and supranuclear gaze palsy in older children and adults. Symptomatic management of patients is crucial. A first product, miglustat, has been granted marketing authorization in Europe and several other countries for specific treatment of the neurological manifestations. The prognosis largely correlates with the age at onset of the neurological manifestations

    Plasticity in D1-Like Receptor Expression Is Associated with Different Components of Cognitive Processes

    Get PDF
    Dopamine D1-like receptors consist of D1 (D1A) and D5 (D1B) receptors and play a key role in working memory. However, their possibly differential contribution to working memory is unclear. We combined a working memory training protocol with a stepwise increase of cognitive subcomponents and real-time RT-PCR analysis of dopamine receptor expression in pigeons to identify molecular changes that accompany training of isolated cognitive subfunctions. In birds, the D1-like receptor family is extended and consists of the D1A, D1B, and D1D receptors. Our data show that D1B receptor plasticity follows a training that includes active mental maintenance of information, whereas D1A and D1D receptor plasticity in addition accompanies learning of stimulus-response associations. Plasticity of D1-like receptors plays no role for processes like response selection and stimulus discrimination. None of the tasks altered D2 receptor expression. Our study shows that different cognitive components of working memory training have distinguishable effects on D1-like receptor expression

    Subdivisions of the Auditory Midbrain (N. Mesencephalicus Lateralis, pars dorsalis) in Zebra Finches Using Calcium-Binding Protein Immunocytochemistry

    Get PDF
    The midbrain nucleus mesencephalicus lateralis pars dorsalis (MLd) is thought to be the avian homologue of the central nucleus of the mammalian inferior colliculus. As such, it is a major relay in the ascending auditory pathway of all birds and in songbirds mediates the auditory feedback necessary for the learning and maintenance of song. To clarify the organization of MLd, we applied three calcium binding protein antibodies to tissue sections from the brains of adult male and female zebra finches. The staining patterns resulting from the application of parvalbumin, calbindin and calretinin antibodies differed from each other and in different parts of the nucleus. Parvalbumin-like immunoreactivity was distributed throughout the whole nucleus, as defined by the totality of the terminations of brainstem auditory afferents; in other words parvalbumin-like immunoreactivity defines the boundaries of MLd. Staining patterns of parvalbumin, calbindin and calretinin defined two regions of MLd: inner (MLd.I) and outer (MLd.O). MLd.O largely surrounds MLd.I and is distinct from the surrounding intercollicular nucleus. Unlike the case in some non-songbirds, however, the two MLd regions do not correspond to the terminal zones of the projections of the brainstem auditory nuclei angularis and laminaris, which have been found to overlap substantially throughout the nucleus in zebra finches

    The primary headaches: genetics, epigenetics and a behavioural genetic model

    Get PDF
    The primary headaches, migraine with (MA) and without aura (MO) and cluster headache, all carry a substantial genetic liability. Familial hemiplegic migraine (FHM), an autosomal dominant mendelian disorder classified as a subtype of MA, is due to mutations in genes encoding neural channel subunits. MA/MO are considered multifactorial genetic disorders, and FHM has been proposed as a model for migraine aetiology. However, a review of the genetic studies suggests that the FHM genes are not involved in the typical migraines and that FHM should be considered as a syndromic migraine rather than a subtype of MA. Adopting the concept of syndromic migraine could be useful in understanding migraine pathogenesis. We hypothesise that epigenetic mechanisms play an important role in headache pathogenesis. A behavioural model is proposed, whereby the primary headaches are construed as behaviours, not symptoms, evolutionarily conserved for their adaptive value and engendered out of a genetic repertoire by a network of pattern generators present in the brain and signalling homeostatic imbalance. This behavioural model could be incorporated into migraine genetic research
    corecore