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ABSTRACT

Cholesterol is an essential component for neuronal
physiology not only during development stage but also
in the adult life. Cholesterol metabolism in brain is in-
dependent from that in peripheral tissues due to blood-
brain barrier. The content of cholesterol in brain must be
accurately maintained in order to keep brain function
well. Defects in brain cholesterol metabolism has been
shown to be implicated in neurodegenerative diseases,
such as Alzheimer’s disease (AD), Huntington’s disease
(HD), Parkinson’s disease (PD), and some cognitive
deficits typical of the old age. The brain contains large
amount of cholesterol, but the cholesterol metabolism
and its complex homeostasis regulation are currently
poorly understood. This review will seek to integrate
current knowledge about the brain cholesterol metabo-
lism with molecular mechanisms.
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INTRODUCTION

Brain lipids consist of glycerophospholipids, sphingolipids,
and cholesterol, they are in roughly equimolar proportions
(Korade and Kenworthy, 2008). In this review, we focus on
the most well studied lipid—cholesterol. Brain is the most
cholesterol-rich organ, it contains about 20% of the whole
body’s cholesterol (Björkhem et al., 2004). Unesterified
cholesterol is the major sterol in the adult brain, and small
amounts of desmosterol and cholesteryl ester are also
present. The majority (about 70%–80%) of cholesterol in
the adult brain is in myelin sheaths formed by oligoden-
drocytes to insulate axons, the rest is made up by plasma

membranes of astrocytes and neurons to maintain their
morphology and synaptic transmission (Dietschy and Tur-
ley, 2004).

Neurons need to build up a large amount of membrane
surface of their axons, dendrites and synapses, including
postsynaptic spines and presynaptic vesicles, where sig-
nificantly high cholesterol content was detected (Goritz et al.,
2005; Pfenninger, 2009; Takamori et al., 2006). Cholesterol
is not only an essential structural component for cellular
membrane and myelin, a precursor of steroid hormones and
bile acid synthesis, but also a required component for sy-
napse and dendrite formation (Goritz et al., 2005; Fester
et al., 2009), axonal guidance (De Chaves et al., 1997).
Cholesterol can also influence cell function through its
biologically active oxidized product-oxysterol (Janowski
et al., 1999; Björkhem, 2006; Radhakrishnan et al., 2007).
Cholesterol is essential for neuronal physiology, both during
development and in the adult stage. Cholesterol depletion in
neurons impairs synaptic vesicle exocytosis, neuronal ac-
tivity and neurotransmission, leads to dendritic spine and
synapse degeneration (Linetti et al., 2010; Liu et al., 2010;
Liu et al., 2007). Defects in cholesterol metabolism lead to
structural and functional central nervous system (CNS) dis-
eases such as Niemann-Pick C disease, Huntington’s dis-
ease, Alzheimer’s disease and Parkinson’s disease (Madra
and Sturley, 2010; Block et al., 2010; Di Paolo and Kim,
2011; Wang et al., 2011).

CHOLESTEROL SYNTHESIS AND TURNOVER
IN THE BRAIN

The amount of sterol in brain ranges about 15–20 mg per g in
many species, among them most of the sterol is unesterified
cholesterol (Dietschy and Turley, 2004). The steady con-
centration remains essentially constant under normal phy-
sical conditions. However, a fraction of the pool is constantly
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replaced. Mechanisms must be in place to constantly ex-
crete or degrade cholesterol, at the same time, to constantly
supply an equivalent amount of new sterol to the cell plasma
membranes. These two processes also must be so tightly
regulated that the steady-state concentration of cholesterol
in the brain remains essentially constant.

Cholesterol synthesis in the brain

Brain cholesterol in adult mice is primarily supplied by de
novo syntheses due to the prevention of lipoproteins uptake
from the circulation by blood brain barrier (BBB) (Jeske and
Dietschy, 1980). Cholesterol’s metabolism in brain is
separated from the rest of the body in the presence of intact
blood brain barrier. Cellular cholesterol synthesis is a com-
plex and resource-intense process. It starts with the con-
version of acetyl-CoA to 3-hydroxy-3-methylglutaryl-CoA by

HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA is then convert-
ed to mevalonate by HMG-CoA reductase. HMG-CoA is
considered the rate-limiting and irreversible step in choles-
terol synthesis. A series of enzymatic reactions occur con-
verting mevalonate into 3-isopenenyl pyrophosphate,
farnesyl pyrophosphate, squalene, lanosterol, and another
19-step process to final product-cholesterol (Berg, 2002).
The majority of brain cholesterol accumulates between the
perinatal period and adolescence when neurons are encir-
cled by myelin. This de novo synthesis is adequate ac-
counting for the cholesterol accumulation rate during early
development, when myelin production by oligodendrocytes
takes place. Moreover, the synthesis rate also closely cor-
relates with the ultimate cholesterol level in different brain
regions (Quan et al., 2003). Similar finding has been re-
ported in rat (Jurevics and Morell, 1995; Jurevics et al.,
1997). The highest cholesterol synthesis rate in human and
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Figure 1. Cholesterol synthesis and metabolism in the brain. Cholesterol in neurons is primarily biosynthesized through

Kandutsch-Russell pathway, whereas in astrocytes through Bloch pathway. Adult neurons essentially rely on astrocyte for cholesterol

providing. Cholesterol uptake is via LRP1/LDLR receptors as apoE-containing cholesterol form. It is then converted to free cholesterol

in endosome/lysosome in assistance of NPC1 and NPC2. Excess of cholesterol is prevented by intracellular esterification and

storage in lipid droplets, or released as a complex with apolipoprotein-containing lipoprotein via ATP-binding cassette transporter, or

converting to oxysterols then passing through BBB.
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rodents takes place when the peak of myelination process
occurs, the myelination process is delayed when cholesterol
synthesis is deficient (Saher et al., 2005). After myelination,
the metabolism of cholesterol in the adult brain maintains at
a very low turnover and minimal losses (Morell and Jurevics,
1996). The half-life of cholesterol in the adult brain is be-
tween 6 months and 5 years (Andersson et al., 1990; Björ-
khem et al., 2006), in contrast, the half-life of plasma
cholesterol is only a few days (Dietschy and Turley, 2004).

De novo cholesterol synthesis takes place primarily in the
endoplasmic reticulum (ER), newly synthesized cholesterol
is transferred from ER to the plasma membrane (PM) rapidly
(DeGrella and Simoni, 1982). The synthesis process is ATP
dependent but is independent of passage through the Golgi
apparatus (Kaplan and Simoni, 1985; Heino et al., 2000).
The redistribution of cholesterol in different subcellular
compartment is maintained by a combination of vesicle-
mediated inter-organelle transport and protein-mediated
monomeric transfer through the aqueous cytoplasm. Since
cholesterol is water insoluble, quantitatively very little un-
bound cholesterol is detected in cytosol, most of the
cholesterol exists as protein binding form such as apoE
containing cholesterol particle in cytosol. While a role in
cholesterol transport has been proposed for these proteins,
whether they have additional functions other than sole
transporters still remain unknown.

Cholesterol synthesis in neurons and astrocytes

Different profiles of post-squalene precursors were observed
in neurons in comparison to astrocytes (Fig. 1). Neurons
contain mainly sterols of Kandutsch-Russel pathway, in-
cluding precursors lanosterol (LA), 7-dehydrocholesterol
(7D), and lathosterol (LT) whereas astrocytes contain pre-
cursors of the Bloch pathway, such as desmosterol (DE)
(Nieweg et al., 2009). In adult neurons, radioactive label was
mainly found in lanosterol, whereas in glial cells it accumu-
lated predominantly in cholesterol (Nieweg et al., 2009). A
very low level of lanosterol-converting enzymes-24-dehu-
drocholesterol reductase (DHCR24) and lanosterol 14-alpha
demethulase (CYP51) were detected in adult neurons, indi-
cating that neurons have difficulty converting lanosterol ef-
ficiently. It was detected that adult neurons have a lower rate
of sterol synthesis in comparison to glial cells. All the evi-
dences demonstrate that adult neurons have a lower ca-
pacity to compensate for a cholesterol deficit by de novo
synthesis in comparison to astrocytes. However, in situ hy-
bridization data from the Allen Mouse Brain Atlas suggest
that transcript level of many cholesterol synthesis enzymes
are higher in neurons compared to these in astrocytes
(Valdez et al., 2010), although higher transcript level doesn’t
necessarily mean the actual protein level and enzymatic
activity have the same pattern. Compartmented culture
studies showed that in neurons, cholesterol synthesis is re-
stricted to neuronal somata and does not occur in axons, but
phospholipids formation takes place in both compartments,

newly synthesized cholesterol in neurons is transported from
soma to axon (Vance et al., 1994).

CHOLESTEROL TURNOVER

When cholesterol synthesis rate exceeds its acquisition rate
in the brain, that is when the net excretion of cholesterol
occurs. Cholesterol overload often happens to adult neu-
rons, because they primarily rely on exogenous cholesterol,
whereas astrocytes produce cholesterol in excess to satisfy
adult neurons’ functional needs. Several pathways for
cholesterol turnover have been identified so far (Fig. 1).

Cholesterol storage

About 1% of the total cholesterol content exists as esterified
form (Bryleva et al., 2010; Liu et al., 2009), it is also called
lipid droplets. This is considered as a way to store surplus
cholesterol intracellularly. Cholesterol is esterified by acyl-
coenzyme A: cholesterol acyltransferase 1 (ACAT1/SOAT1).
This process takes place primarily in the endoplasmic reti-
culum. The rate of cholesterol movement from the plasma
membrane to the endoplasmic reticulum is higher in cells with
increased cholesterol levels, leading to an enhancement of
the storage process in cells with excess unesterified
cholesterol (Wustner et al., 2005). Genetic reduction of
ACAT1/SOAT1 in mice decreased the concentration of
cholesterol esters in the brain by 86% (Hutter-Paier et al.,
2004). A genetic association study in humans also showed
that a variant of ACAT1/SOAT1 gene is associated with lower
levels of cholesterol in the CSF (Wollmer et al., 2003a). The
ACAT1/SOAT1 enzyme is more active in neurons than in glial
cells (Sakashita et al., 2000). ACAT1/SOAT1 becomes active
in astrocytes under conditions like lacking apoE and when
exogenous cholesterol is overloaded (Karten et al., 2006).

Conversion to oxysterol

This is the major excretion way in the brain. The hy-
droxylation of cholesterol to 24-hydroxycholesterol (24-OHC)
is catalyzed by cholesterol 24-hydroxylase (encoded
by CYP46A1, which is a member of the cytochrome p450
family). Unlike non-oxydized cholesterol, oxysterols such as
24-hydroxycholesterol can cross lipophilic membranes such
as the brain blood barrier (BBB) at a much faster rate than
cholesterol itself (Lange et al., 1995; Meaney et al., 2002).
However, the expression of this enzyme is restricted to
certain types of neurons in the brain, such as pyramidal cells
of the cortex and Purkinje cells of the cerebellum (Lund et al.,
2003; 1999; Lütjohann et al., 1996), suggesting that these
cells are particularly sensitive to excess of cholesterol. Im-
munocytochemical staining of cultured neurons showed that
CYP46A1 is located primarily in somata and dendrites of
neurons, but not in axons or presynaptic terminals (Ramirez
et al., 2008). There is little expression of cholesterol 24-hy-
droxylase in glial cells in the brain (Ramirez et al., 2008).
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This indicates that the major cholesterol turnover takes place
in neurons, not in astrocytes.

Disruption of the murine cholesterol 24-hydroxylase gene
reduced the rate of cholesterol synthesis in the brain by
40%, whereas the brain content of cholesterol was unaltered
(Lund et al., 2003), this is possibly due to the concomitant
reduction in the cholesterol mevalonate pathway. All the
evidences indicate that 24-hydroxylase pathway only ac-
counts for a portion of cholesterol metabolism. Cholesterol
synthesis is decreased in hippocampus of aging brain, the
24S-hydroxycholesterol level is slightly decreased as well.
This could explain why the absolute cholesterol content re-
mains at the same level (Thelen et al., 2006).

Secretion via ABC transporter

Neurons express ABC transporters, namely ABCA1,
ABCG1, and ABCG4 (Kim et al., 2008), to mediate cellular
sterol efflux at the plasma membrane. ABCA1 is expressed
by neurons in embryonic and adult rodents (Wellington et al.,
2002; Koldamova et al., 2003), the expression level in neu-
rons is much higher than in astrocytes (Tarr and Edwards,
2008). This pathway is CYP46A1 independent for choles-
terol elimination from neurons. Cholesterol is directly re-
leased onto APOA1-containing lipoproteins that is present in
CSF (Roheim et al., 1979; Pitas et al., 1987a; Koch et al.,
2001), then these lipoproteins could be removed from the
brain through LRP1 or scavenger receptor class B1, both of
these two receptors are expressed in brain capillary en-
dothelial cells (Panzenboeck et al., 2002; Gosselet et al.,
2009). Down-regulation of ABCA1 levels in cultured neurons
reduced the efflux of cholesterol onto externally supplied
apoE, whereas, increased ABCA1 levels enhanced the lipid
release (Minagawa et al., 2009). Taken together, neurons
may handle excess cholesterol by esterification and subse-
quent intracellular storage, by direct excretion via ABC
transporters and by conversion to 24-OHC.

CHOLESTEROL HOMEOSTASIS IN THE BRAIN

A sufficient availability of cholesterol is necessary for normal
neuronal function and morphology, neuronal cells’ function is
impaired not only due to lack but also surplus of cholesterol
(Ko et al., 2005; Pooler et al., 2006). Defects of cholesterol
homeostasis in the adult brain are linked to neurodegen-
erative diseases like Niemann-Pick type C disease or Alz-
heimer’s disease (Madra and Sturley, 2010; Block et al.,
2010; Di Paolo and Kim, 2011; Wang et al., 2011). It is well
established that neuronal cells regulate their cholesterol
content by an exquisite feedback mechanism that balances
biosynthesis, import, and excretion. Cells sense their level of
cholesterol by membrane‐bound transcription factors known
as sterol regulatory element‐binding proteins (SREBPs),
which regulates the transcription of genes encoding en-
zymes of cholesterol and fatty acid biosynthesis as well as
lipoprotein receptors (Brown and Goldstein, 1999) to either

increase cholesterol synthesis and uptake in sterol-depleted
cells or decrease cholesterol-synthesizing enzymes when
sterols are overloaded in cells (DeBose-Boyd et al., 1999;
Nohturfft et al., 2000). When cholesterol reaches the max-
imum required level, 24-hydroxylase catalyzes cholesterol to
24-hydroxycholesterol (24-OHC), that can be eliminated in
the presence of HDL as a lipid acceptor and protects neu-
rons from the toxic effect of 24-OHC accumulation (Matsuda
et al., 2013). 24-OHC, beside being a metabolite for
elimination of cholesterol, it also serves as an activator of
nuclear transcription factors, for example, liver X receptors α
and β, which increase the expression of cholesterol transport
genes (Rebeck, 2004; Tall, 2008) including ABCA1 in both
neuron and glia cell (Fukumoto et al., 2002), apoE in astro-
cyte (Liang et al., 2004; Pfrieger and Ungerer, 2011), con-
sequently cholesterol efflux is increased. ABCA1 is one of
the major mediators for cholesterol homeostasis. During the
early period of development, when the majority of growth
and myelination takes place, the net cholesterol flux increase
rapidly. After myelination, cholesterol synthesis continues at
a very low level in the CNS. Neurons do not efficiently syn-
thesize cholesterol after myelination completes and mainly
rely on external source of cholesterol (Quan et al., 2003).
Conditional ablation of cholesterol synthesis in mice neurons
leads to significant transfer and uptake of glia-derived
cholesterol by neurons. However, under certain condition, for
example when brain-derived neurotropic factor (BDNF) is in
present, the endogenous synthesis of cholesterol in neuron
is partially restored (Numakawa et al., 2010). Cholesterol
synthesis ablation in neuronal precursor cell during embry-
onic development leads reduced brain size and perinatal
lethality and newly generated neurons (Saito et al., 2009). All
these evidences indicate that cholesterol synthesis in neu-
rons is essential at early development stage. On the other
hand, mice lacking cellular cholesterol synthesis in adult
neurons were phenotypically indistinguishable from controls,
furthermore, no obivious signs of neurodegeneration or in-
flammation were observed (Fünfschilling et al., 2007). This
indicates that cholesterol synthesis is not essential in adult
neurons. Lipoprotein related protein (LRP) level remains the
same in this mouse model too, this also supports that adult
neurons already express sufficient LRP to import cholesterol
as apoE-containing lipoprotein particles. All the evidences
advocate that some adult neurons do not require cell au-
tonomous cholesterol synthesis, which is very likely to rely
on oligodendrocytes and astrocytes for cholesterol provid-
ing, especially, astrocytes, as they express apoE in vivo and
neuronal cell can import cholesterol through receptor-medi-
ated endocytosis of lipoproteins such as apoE binding form.
The apoE-cholesterol particle is processed to free choles-
terol in lysosome after being endocytosised (Ikonen, 2008;
Fagan and Holtzman, 2000) and then transported to mem-
brane. The cholesterol transport between cells is influenced
by the fluidity of cell membranes and the distribution of mi-
crodomains such as lipid rafts. When membrane fluidity
elevated (Xu et al., 2001), the intermolecular packing of
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phospholipid fatty acyl chains decreases (Ollila et al., 2007),
the altered membrane composition leads to functional
change.

It has been believed for a long time that glia only pas-
sively support neurons, but evidence shows that glia is ac-
tively involved in assisting neuronal functions like
synaptogenesis (Pfrieger and Barres, 1997; Ullian, 2001).
Cholesterol in apoE particles secreted by astrocytes in-
creases the induced synaptic responses substantially in
neuronal culture by increasing presynaptic function and
dendrite differentiation (Christopherson et al., 2005; Mauch
et al., 2001). Neuronal culture in presence of astrocytes
showed about 10 fold more excitatory synapse activity and
5–7 fold increase of synapse numbers. Thrombospondins
(TSPs), a family of extracellular matrix proteins, has found to
increase synapse number in neuronal culture. Removal of
TSPs from astrocyte-conditional medium diminishes the sy-
naptogenic activity of the medium. All those indicated that
TSPs are necessary and sufficient synaptogenic factor for
synapse formation. Besides this, astrocytes also produce
messenger RNAs that encode several synaptic adhesion
proteins, including neurexins, neuroligins, and cadherins
(Cahoy et al., 2008), that are known to be important for sy-
napse formation and are believed function in neurons only
(Fox and Umemori, 2006).

MAJOR REGULATORS IN BRAIN CHOLESTEROL
METABOLISM

Apolipoproteins (apoE) in the brain

Apolipoprotein E (ApoE), a 39-kDa protein, is a major
apolipoprotein in the CNS, which is highly expressed in
brain, such that the brain is the organ with the second
highest apoE expression after liver (Linton et al., 1991).
ApoE-containing lipoproteins secreted by glial cells bind to
lipoprotein receptors, and being taken up into neurons. The
major function of apoE is participating in cholesterol home-
ostasis. Astrocytes are the major source of apoE followed by
oligodendrycytes, microglia, and ependymal layer cells
(Mahley et al., 2006). Neurons may express apoE under
certain condition such as excitotoxic injury (Xu et al., 1999).
When nerve injury happens in central nervous systems, the
synthesis of apoE by glial cells increased up to 150 fold
(Ignatius et al., 1986; Snipes et al., 1986; Boyles et al.,
1990). There is a dynamic exchange of apoE among brain
cells, as apoE is the major transport protein for extracellular
cholesterol and other lipids, and that apoE-mediated
cholesterol exchange occurs between neuronal and non-
neuronal cells in CNS (Lahiri, 2004). The stability of apoE in
the brain requires the association with lipids. The apoE level
is decreased in abca1 knockout mice, which is a gene
necessary for the apoE lipidation (Wahrle et al., 2004;
Hirsch-Reinshagen et al., 2005).

In vitro cultured astrocytes, apoE knockout showed
reduced lipoprotein secretion (Piedrahita et al., 1992; Plump

et al., 1992), but it remains controversial in apoE knockout
mice. Some studies revealed normal cholesterol contents
(Jansen et al., 2000; Lomnitski et al., 1999; Han et al., 2003)
and turnover in brain, on the other hand, other studies
showed reduced cholesterol level (Levi et al., 2005).
Lipoproteins secreted by cultured astrocytes contain
cholesterol and phospholipids, but relatively little esterified
cholesterol. Some cholesterol precursors like lathosterol and
desmosterol were detected in glia-derived lipoproteins,
indicating that the precursor form may be converted to
cholesterol in neurons after uptake. Epidemiology studies
reveal the link between apoE with late-onset Alzheimer’s
disease. ApoE isoform ε4 is the most common risk factor
identified so far (Corder et al., 1993). ε4 alleles also correlate
with amyloid plaques in Alzheimer patient’s autopsy (Sch-
mechel et al., 1993).

ATP-binding cassette (ABC) transporter
in CNS- Lipoprotein Lipidation

ATP-binding cassette (ABC) transporters are essential
component for mediating lipid transport in CNS, especially in
the formation of apoE-containing lipoproteins (Tachikawa
et al., 2005). ABCA and ABCG are the major classes in the
brain, they are critical for lipid homeostasis (Dean et al.,
2001; Schmitz et al., 2000; Puglielli et al., 2003). The core
lipoprotein particle is assemblied in ER, the lipidation of
nascent particles is mediated by specific subtypes of the
ATP binding cassette (ABC) transporters. Cholesterol
metabolite 24-OHC can up-regulate ABCA1’s expression,
ABCA1, then, can mediate cholesterol efflux in the brain and
influence whole-brain cholesterol homeostasis. ABCA1 cat-
alyzes the initial transfer of lipids onto lipid-free apolipopro-
teins, including apoE, to form nascent particles, which are
then fully lipidated in a second phase of efflux mediated by
ABCG1 (Gelissen et al., 2006; Vaughan and Oram, 2006).
ABCA1 is expressed in both neurons and glial cells, but
much higher level in neurons than in glial cells (Wellington
et al., 2002; Koldamova et al., 2003; Fukumoto et al., 2002).
Neuron and glia specific ABCA1 deficiency leads to poor
lipidation of apoE, and significant decrease of cholesterol
level, decrease of apoE level in brain and CSF and size of
apoE-containing lipoproteins in CSF (Hirsch-Reinshagen
et al., 2004), suggesting that poorly lipidated apoE is more
rapidly cleared. This may indicate that enhanced catabolism
of apoE due to insufficient lipidation. A genetic study on
human subjects showed that a single nucleotide polymor-
phism in the abca1 gene highly correlates with cholesterol
level in CSF (Wollmer et al., 2003b). ABCA1 transfers celluar
cholesterol to acceptors like APOA1 (Oram and Heinecke,
2005). The cholesterol efflux from cultured astrocytes can be
enhanced by agonists of liver x receptors (LXRs) treatment.
These nuclear receptors control expression of proteins that
mediate cellular cholesterol release including apoE. All the
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evidences indicate that ABCA1 is a crucial molecule for
apoE-containing lipoprotein formation in CNS.

LDL receptor family in the CNS

Numerous lipoprotein receptors of LDL receptor family have
been identified in CNS including LDL receptor, VLDL-re-
ceptor, apoER2/LRP8, LRP4, LRP, LRP2 (megalin),
LRP1B, LRP5/LRP6, and LRP11/SORL1 (Herz, 2009;
Pottier et al., 2012). Ligands for these receptors are apoE-
containing lipoproteins, lipids and other macromolecules
(Ignatius et al., 1987; Pitas et al., 1987b). Among them, the
LDL-receptor and LRP1 are the main receptors for the
uptake of apoE-containing lipoprotein particles in the brain.
The major difference between LRP1 and LDLR is that the
latter is more highly expressed in glial cells than in neu-
rons, but LRP1 is more highly expressed in neurons than in
glial cells (Rebeck et al., 1993). LRP1 appears to have the
highest transport capacity for apoE, due to its rapid endo-
cytic rates (Li et al., 2001). ApoE associated with lipid may
induce a strong anti-apoptotic effect and protect cells
against neurodegeneration through an intercellular signal-
ing pathway. LDL-receptor knockout mice have increased
levels of apoE in brain parenchyma and in CSF (Liu et al.,
2010), conditional deletion of Lrp1 gene in mouse brain
significantly decreases apoE, cholesterol, and sulfatide (Liu
et al., 2010). ApoE lipoprotein particles secreted by glial
cells have higher affinity for LDLR than LRP1, but CSF-
isolated high-density lipoprotein (HDL) particles bind more
strongly to LRP1 (Fagan et al., 1996). The conformation
and lipidation status of apoE may affect the specificity of its
receptor binding.

NPC1/NPC2-redistribution of lipoprotein-derived
cholesterol

Externally uptaken cholesterol enters endosome/lysosome
before reaches to subcellular membrane compartments
(Soccio and Breslow, 2004; Storch and Xu, 2009). Two
components, namely Niemann-Pick type C1 (NPC1) and
C2 (NPC2), are highly involved in this process. NPC1 and
NPC2 are expressed in both neurons and glial cells (Pra-
sad et al., 2000; Ong et al., 2004; German et al., 2002;
Patel et al., 1999; Hu et al., 2000). NPC1 is a transmem-
brane protein with a sterol-sensitive domain (Carstea et al.,
1997) and NPC2 is an intralumenal component that binds
cholesterol (Naureckiene et al., 2000; Soccio and Breslow,
2004). The dysfunction of either protein causes accumula-
tion of unesterified cholesterol in the late endosome/lyso-
some and pathologic changes in neurons and glial cells
(Reid et al., 2004; Baudry et al., 2003). Conditional NPC1
knockout in Purkinje cells leads to age-dependent motor
deficits and Purkinje cell degeneration (Elrick et al., 2010),
rescue of NPC1 in neurons prevented neuronal degeration
(Lopez et al., 2011).

CHOLESTEROL AND ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is a neurodegenerative disorder char-
acterized by progressive and irreversible memory impairment
and cognitive decline. The pathological hallmarks of AD are ex-
tracellular amyloid plaques of amyloid β (Aβ) peptide and intra-
cellular neurofibrillary tangles.Cholesterol is found tobeenriched
in the brain plasma membranes of AD patients. The cholesterol
level increases throughout the course of clinical disease, and
more increase was observed when the disease progresses
(Cutler et al., 2004;Xionget al., 2008). In vitrostudy indicated that
overload of cholesterol at plasma membrane in primary cultured
neurons leads toan increaseofAβproduction through increasing
BACE1-mediated APP cleavage (Marquer et al., 2011). APP in-
tracellular domain (AICD) release increases during this process,
which down-regulates low density lipoprotein-related protein 1
(LRP1) transcription that is responsible forexogenouscholesterol
capture at the plasmamembrane (Liu et al., 2007), this ultimately
results in a decrease of cellular cholesterol levels.

CHOLESTEROL IN THE BRAIN AND PERIPHERAL
SYSTEM

Cholesterol is an essential structural component for plasma
membrane both in brain and peripheral tissue. It is required
to build and maintain membrane, modulate membrane flu-
idity. The brain contains about 20% of whole body choles-
terol, brain cholesterol is deeply involved in synapse
development, synapse formation, dentrite differentiation,
axonal elongation, and long-term potentiation. On the other
hand, peripheral cholesterol is an important precursor
molecule for the synthesis of Vitamin D and the steroid
hormones. Cholesterol is converted to bile in the liver, bile
salts solubilize fats and aid in intestinal absorption. Low-
density lipoprotein (LDL) particles are the major blood
cholesterol carriers. When LDL particles are overloaded in
the blood stream, they tend to be oxidized and taken up by
macrophages, which become trapped in the walls of blood
vessels and contribute to atherosclerotic plaque formation.
In contrast, high-density lipoprotein (HDL) particles transport
cholesterol back to the liver through reverse cholesterol
transport, either for excretion or for synthesis of hormones.

CONCLUSION AND OUTLOOK

The investigation of cholesterol metabolism in the brain has a
long history, but this field has gained momentum only within
the last decade, probably because cholesterol is implied in
neurodegenerative disease. Cells in the brainmanage to keep
their cholesterol content at required level in a way that is dif-
ferent from the rest of the body. Neurons and astrocytes, more
importantly, their cooperation is essential for brain develop-
ment and function. Astrocytes and neurons synthesize
cholesterol by slightly different pathwaysandat different rates.
Several pathways mediate cholesterol excretion from the
brains, cholesterol hydroxylation has been proven to be the
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most efficient way by neurons. There is a cell-specific distri-
bution of proteins that are involved in cholesterol metabolism.
For example, apoE is highly expressed only in astrocytes, but
not in neurons. This allows cholesterol transport happening
between different brain cells. CYP46 is highly expressed in
neurons, but not in astrocytes, this enables the removal of
surplus cholesterol from the neurons.

However, questions like whether all neurons rely on
cholesterol supplied by astrocytes, the regulation of choles-
terol transport from astrocytes to neurons, the crosstalk be-
tween neuron and astrocyte during this process still remain
unclear. The understanding of cholesterol metabolism in the
brain and its role in disease requires further studies.
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