1,088 research outputs found

    Testing of the 2.6 GHz SRF Cavity Tuner for the Dark Photon Experiment at 2 K

    Full text link
    At FNAL two single cell 2.6 GHz SRF cavities are being used to search for dark photons, the experiment can be conducted at 2 K or in a dilution refrigerator. Precise frequency tuning is required for these two cavities so they can be matched in frequency. A cooling capacity constraint on the dilution refrigerator only allows piezo actuators to be part of the design of the 2.6 GHz cavity tuner. The tuner is equipped with three encapsulated piezos that deliver long and short-range frequency tuning. Modifications were implemented on the first tuner design due to the low forces on the piezos caused by the cavity. Three brass rods with Belleville washers were added to the design to increase the overall force on the piezos. The testing results at 2 K are presented with the original design tuner and with the modification.Comment: 21st International Conference on Radio-Frequency Superconductivity (SRF 2023

    Elliptical flow -- a signature for early pressure in ultrarelativistic nucleus-nucleus collisions

    Get PDF
    Elliptical energy flow patterns in non-central Au(11.7AGeV) on Au reactions have been studied employing the RQMD model. The strength of these azimuthal asymmetries is calculated comparing the results in two different modes of RQMD (mean field and cascade). It is found that the elliptical flow which is readily observable with current experimental detectors may help to distinguish different reasonable expansion scenarios for baryon-dense matter. The final asymmetries are very sensitive to the pressure at maximum compression, because they involve a partial cancelation between early squeeze-out and subsequent flow in the reaction plane. This cancelation can be expected to occur in a broad energy region covered by the current heavy ion fixed-target programs at BNL and at CERN.Comment: 14 pages LaTeX including 3 postscript figure

    Interpretations of J/ψJ/\psi suppression

    Full text link
    We review the two main interpretations of J/ψJ/\psi suppression proposed in the literature. The phase transition (or deconfining) scenario assumes that below some critical value of the local energy density (or of some other geometrical quantity which depends both on the colliding systems and on the centrality of the collision), there is only nuclear absorption. Above this critical value the absorptive cross-section is taken to be infinite, i.e. no J/ψJ/\psi can survive in this hot region. In the hadronic scenario the J/ψJ/\psi dissociates due both to nuclear absorption and to its interactions with co-moving hadrons produced in the collision. No discontinuity exists in physical observables. We show that an equally good description of the present data is possible in either scenario.Comment: 12 pages, LaTeX, uses epsfig and ioplppt; review talk given by A. Capella at the International Symposium on Strangness in Quark Matter, Santorini (Greece), April 1997; Figs. 1 and 2 not available but can be found in Refs. 13 and 6 respectivel

    Charmonium suppression in p-A collisions

    Get PDF
    The new high precision data on charmonium production in proton-nucleus collisions by the E866/NuSea collaboration at Fermilab allow - together with older data at lower energies - to fix a unique set of parameters for the standard production and absorption scenario of charmonium in a proton-nucleus reaction. In this scenario the c-cbar pair is formed in an octet state, emits a gluon and continues its radial expansion in a singlet state until it has reached the charmonium radius. In all three phases it can interact with the nuclear environment. We find that the lifetime of the octet state is much shorter than acceptable on physical grounds. This challenges the physical reality of the first phase in the standard scenario.Comment: 8 pages, 10 figure

    Search for astronomical neutrinos from blazar TXS 0506+056 in super-kamiokande

    Get PDF
    We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 × 10−7 and 4.5 × 10−7–9.3 × 10−10 [erg cm−2 s−1], respectively

    Eschar and neck lymphadenopathy caused by Francisella tularensis after a tick bite: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>In 25 to 35% of cases, the aetiological agent of scalp eschar and neck lymphadenopathy after a tick bite remains undetermined. To date, <it>Rickettsia slovaca</it>, <it>Rickettsia raoultii </it>and more recently <it>Bartonella henselae </it>have been associated with this syndrome.</p> <p>Case presentation</p> <p>A four-year-old Caucasian boy was admitted to hospital with fever, vomiting and abdominal pain. On physical examination, an inflammatory and suppurating eschar was seen on the scalp, with multiple enlarged cervical lymph nodes on both sides. Although no tick was found in this scalp lesion, a diagnosis of tick-borne lymphadenopathy was suggested, and explored by serology testing and polymerase chain reaction of a biopsy from the eschar. <it>Francisella tularensis </it>DNA was found in the skin biopsy and the serology showed titres consistent with tularaemia.</p> <p>Conclusion</p> <p>This is, to the best of our knowledge, the first reported case of scalp eschar and neck lymphadenopathy after tick bite infection caused by <it>F. tularensis.</it></p

    Caloric curves and critical behavior in nuclei

    Get PDF
    Data from a number of different experimental measurements have been used to construct caloric curves for five different regions of nuclear mass. These curves are qualitatively similar and exhibit plateaus at the higher excitation energies. The limiting temperatures represented by the plateaus decrease with increasing nuclear mass and are in very good agreement with results of recent calculations employing either a chiral symmetry model or the Gogny interaction. This agreement strongly favors a soft equation of state. Evidence is presented that critical excitation energies and critical temperatures for nuclei can be determined over a large mass range when the mass variations inherent in many caloric curve measurements are taken into account.Comment: In response to referees comments we have improved the discussion of the figures and added a new figure showing the relationship between the effective level density and the excitation energy. The discussion has been reordered and comments are made on recent data which support the hypothesis of a mass dependence of caloric curve

    The OPERA experiment Target Tracker

    Get PDF
    The main task of the Target Tracker detector of the long baseline neutrino oscillation OPERA experiment is to locate in which of the target elementary constituents, the lead/emulsion bricks, the neutrino interactions have occurred and also to give calorimetric information about each event. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multi-anode photomultiplier tubes. All the elements used in the construction of this detector and its main characteristics are described.Comment: 25 pages, submitted to Nuclear Instrument and Method

    JUNO Conceptual Design Report

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4σ\sigma, and determine neutrino oscillation parameters sin⁥2Ξ12\sin^2\theta_{12}, Δm212\Delta m^2_{21}, and ∣Δmee2∣|\Delta m^2_{ee}| to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. ∌\sim17,000 508-mm diameter PMTs with high quantum efficiency provide ∌\sim75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.Comment: 328 pages, 211 figure
    • 

    corecore