Data from a number of different experimental measurements have been used to
construct caloric curves for five different regions of nuclear mass. These
curves are qualitatively similar and exhibit plateaus at the higher excitation
energies. The limiting temperatures represented by the plateaus decrease with
increasing nuclear mass and are in very good agreement with results of recent
calculations employing either a chiral symmetry model or the Gogny interaction.
This agreement strongly favors a soft equation of state. Evidence is presented
that critical excitation energies and critical temperatures for nuclei can be
determined over a large mass range when the mass variations inherent in many
caloric curve measurements are taken into account.Comment: In response to referees comments we have improved the discussion of
the figures and added a new figure showing the relationship between the
effective level density and the excitation energy. The discussion has been
reordered and comments are made on recent data which support the hypothesis
of a mass dependence of caloric curve