188 research outputs found

    Get more for your porous system: heats of adsorption from powder diffraction data

    Full text link

    Topological metal behavior in GeBi2Te4 single crystals

    Full text link
    The metallic character of the GeBi2Te4 single crystals is probed using a combination of structural and physical properties measurements, together with density functional theory (DFT) calculations. The structural study shows distorted Ge coordination polyhedra, mainly of the Ge octahedra. This has a major impact on the band structure, resulting in bulk metallic behavior of GeBi2Te4, as indicated by DFT calculations. Such calculations place GeBi2Te4 in a class of a few known non-trivial topological metals, and explains why an observed Dirac point lies below the Fermi energy at about -0.12eV. A topological picture of GeBi2Te4 is confirmed by the observation of surface state modulations by scanning tunneling microscopy (STM).Comment: 10 pages, 8 figure

    New structural and magnetic aspects of the nanotube system Na2V3O7

    Full text link
    We present new experimental results of low temperature x-ray synchrotron diffraction, neutron scattering and very low temperature (mK-range) bulk measurements on the nanotube system {\tube}. The crystal structure determined from our data is similar to the previously proposed model (P. Millet {\it et al.} J. Solid State Chem. 147\bf{147}, 676 (1999)), but also deviates from it in significant details. The structure comprises nanotubes along the c-axis formed by stacking units of two V-rings buckled in the abab-plane. The space group is P3ˉ\bar{3} and the composition is nonstoichiometric, Na(2-x)V3O7, x=0.17. The thermal evolution of the lattice parameters reveals anisotropic lattice compression on cooling. Neutron scattering experiments monitor a very weak magnetic signal at energies from -20 to 9 meV. New magnetic susceptibility, specific heat measurements and decay of remanent magnetization in the 30 mK - 300 mK range reveal that the previously observed transition at ~76 mK is spin-glass like with no long-range order. Presented experimental observations do not support models of isolated clusters, but are compatible with a model of odd-legged S=1/2 spin tubes possibly segmented into fragments with different lengths

    Structural heterogeneity in twinned Yb 2− x

    Full text link

    Complex hydrides for energy storage

    Get PDF
    In the past decades, complex hydrides and complex hydrides-based materials have been thoroughly investigated as materials for energy storage, owing to their very high gravimetric and volumetric hydrogen capacities and interesting cation and hydrogen diffusion properties. Concerning hydrogen storage, the main limitations of this class of materials are the high working temperatures and pressures, the low hydrogen absorption and desorption rates and the poor cyclability. In the past years, research in this field has been focused on understanding the hydrogen release and uptake mechanism of the pristine and catalyzed materials and on the characterization of the thermodynamic aspects, in order to rationally choose the composition and the stoichiometry of the systems in terms of hydrogen active phases and catalysts/destabilizing agents. Moreover, new materials have been discovered and characterized in an attempt to find systems with properties suitable for practical on-board and stationary applications. A significant part of this rich and productive activity has been performed by the research groups led by the Experts of the International Energy Agreement Task 32, often in collaborative research projects. The most recent findings of these joint activities and other noteworthy recent results in the field are reported in this paper

    Experimental charge density of LiBD4 from maximum entropy method

    Get PDF
    We report on maximum entropy method study of the experimental atomic and ionic charges of LiBD4 in its low-temperature orthorhombic phase. Synchrotron radiation x-ray powder diffraction data, neutron powder diffraction data, and density functional calculations were used. The atomic and ionic charges were determined for both experimental and theoretical results using the Bader analysis for atoms in molecules. The charge transfer from the Li cation to the BD4 anion is 0.86(+/- 9) e, which is in good agreement with the ab initio calculated value of 0.895 e. The experimental accuracy was determined considering the differences between results obtained for data collected at 10 and 90 K, different experimental setups (high-resolution diffractometer or image plate diffractometer), and different structural models used for the prior density distributions needed for accurate maximum entropy calculations (refined using only synchrotron radiation x-ray powder diffraction data or combined with neutron powder diffraction data)

    Tetrahedra system Cudaca: high-temperature manifold of molecular configurations governing low-temperature properties

    Full text link
    The Cudaca system composed of isolated Cu2+ S=1/2 tetrahedra with antiferromagnetic exchange should exhibit properties of a frustrated quantum spin system. ab initio density functional theory calculations for electronic structure and molecular dynamics computations suggest a complex interplay between magnetic exchange, electron delocalization and molecular vibrations. Yet, extensive experimental characterization of Cudaca by means of synchrotron x-ray diffraction, magnetization, specific heat and inelastic neutron scattering reveal that properties of the real material can be only partly explained by proposed theoretical models as the low temperature properties seem to be governed by a manifold of molecular configurations coexisting at high temperatures.Comment: 15 figure

    Boron-nitrogen based hydrides and reactive composites for hydrogen storage

    Get PDF
    Hydrogen forms chemical compounds with most other elements and forms a variety of different chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and composites with new prospects for rational design and the tailoring of properties. This review highlights a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake properties can be improved
    • 

    corecore