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Hydrogen forms chemical compounds with most other elements and forms a variety of different

chemical bonds. This fascinating chemistry of hydrogen has continuously provided new materials and

composites with new prospects for rational design and the tailoring of properties. This review highlights

a range of new boron and nitrogen based hydrides and illustrates how hydrogen release and uptake

properties can be improved.

Introduction
Water is the major naturally occurring liquid compound on earth

covering ca. 70% of the earth’s surface. Electrolysis powered by

renewable energy sources, for example, wind and solar energy

enables the splitting of water to H2 and O2. The stored energy can

be released as electricity and heat by reacting H2 and O2 to form

water in a fuel cell. The overall process is a closed sustainable

material cycle, where hydrogen is working as an energy carrier [1].

A remaining challenge is to store the significant amounts of

hydrogen [2–11].

Hydrogen bonds are vital for biological systems and life, the

unique properties of water, and so on. The dihydrogen bond is

defined as the interaction between a metal hydride bond (hydri-

dic hydrogen) and an OH or NH group or other proton donor

(protic hydrogen). Unlike the classical hydrogen bond, the

dihydrogen bond can react in the solid state via elimination

of hydrogen by exchanging the weak Hd+� � �–dH interactions for

strong covalent bonds in H2, and thus may open new routes to

the rational design of structures and hydrogen release reaction

mechanisms [12].

A rarer interaction is the hydrogen–hydrogen bond, which

occurs between two bonded hydrogen atoms with similar partial

charges, which may be significantly stronger than van der Waals

interactions and may play an important role for the physical

properties of solid molecular borohydrides, for example, Zr(BH4)4

[13]. The hydrogen molecule can also act as a ligand in some

complexes of the heavier d-block metals, for example, W or Re, and

the distance between the hydrogen atoms can be utilized to

distinguish between a M(h2-H2) complex with H–H bond length

in the range 0.74 to �1.38 Å and polyhydrido complexes with H–H

distances > 1.6 Å. The limiting value 0.74 Å is the internuclear

distance in the hydrogen molecule [14].

The ligands NH3 and BH4
� are three dimensional, while NH2

�

and NH2� are two- and one-dimensional, respectively. The bond

length in BH4
� is approx. 1.22–1.24 Å, while the bond length is

slightly shorter and decreasing from neutral NH3 (1.01 Å) toward

NH2
� and NH2�.

The hydrogen molecule, H2, has the lowest number of electrons

(2) of all molecules and therefore has the weakest physisorption
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interactions. Hydrogen adsorption is often observed to follow

Langmuir isotherms (i.e. monolayer adsorption), and the amount

of hydrogen adsorbed under saturation conditions is generally

proportional to the specific surface area determined by the BET

method for the porous adsorbent (known as Chahine’s rule) [15–

17]. A significant advantage is that the physisorption process has

fast adsorption/desorption kinetics.

Ionic, metallic and covalent bonds are also formed by hydrogen,

which has been discussed in another review in this issue of

Materials Today [18]. Altogether, this illustrates that hydrogen

forms a variety of different types of chemical bonds and interac-

tions with matter and other elements and reacts with almost all

other elements in the periodic table [19]. This suggests that there is

still room for significant discoveries of a variety of novel hydrogen

containing materials. Furthermore, hydrogen can be released in a

chemical reaction between two or more hydrides denoted reactive

hydride composites (RHC) [8,11]. Dihydrogen bonding and the RHC

concept provide new schemes for the design and synthesis of new

materials with novel properties and for tailoring known materials

properties.

Reactive hydride composites
A promising approach for tailoring thermodynamic properties is

to allow two or more hydrogen-containing materials to react

during the release of hydrogen. Such hydride mixtures are denoted

Reactive Hydride Composites (RHC) [20]. In 2002, Chen et al. dis-

covered reversible hydrogen release and uptake of lithium amide

hydride, LiNH2–LiH, according to reaction scheme (1) [21].

LiNH2ðsÞ þ 2LiHðsÞ $ Li2NHðsÞ
þ LiHðsÞ þ H2ðgÞ $ Li3NðsÞ þ 2H2ðgÞ (1)

The first step involves an amide–imide reaction, which may

involve hydrogen elimination via dihydrogen-bonded hydrogen,

but has also been suggested to involve ammonia [22–24] according

to reaction scheme (2).

LiNH2ðsÞ þ H2ðgÞ $ LiHðsÞ þ NH3ðgÞ (2)

This reaction reveals a rare example where hydrogen is con-

verted, 8.1 wt%, and heat is absorbed, DH = 50 � 9 kJ/mol [25–27].

The reaction appears to be driven by larger entropy of the ammo-

nia molecule than the hydrogen.

In reaction scheme (1), only the amide–imide reaction is rever-

sible at moderate conditions with a hydrogen storage capacity of

rm = 6.5 wt% and an enthalpy change of DHdec = 66 kJ/mol H2

[28]. Several other reversible nitrogen-based systems have been

investigated recently and are promising for future mobile applica-

tions, for example, Mg(NH2)2–2LiH with a low calculated decom-

position temperature, Tdec < 90 8C (at p(H2) = 1 bar) as a result of a

low enthalpy change for the reaction, DHdec = 38.9 kJ/mol H2 [29–

31].

Metal borohydrides and a metal amide can also form RHC

systems as shown for LiBH4–2LiNH2 in reaction scheme (3) [32].

Initially, a new crystalline solid with composition Li3BN2H8,

forms by mechanochemical treatment, which is an intermediate

compound prior to the formation of a very stable decomposition

product, Li3BN2, illustrated in reaction scheme (3). The onset

temperature for hydrogen release decreases from �380 to 250 8C
for LiBH4 in the composite LiBH4–2LiNH2, and thermal

decomposition releases more than 10 wt% H2 in the temperature

range 250–350 8C, but, unfortunately, the system is irreversible.

LiBH4ðsÞ þ 2LiNH2ðsÞ ! Li3BN2H8ðsÞ
! Li3BN2ðsÞ þ 4H2ðgÞ (3)

In contrast, the analog lithium alanate amide system, LiAlH4–

2LiNH2, releases 2 equiv. H2 already during mechanochemical

treatment forming an amorphous mixture with the overall com-

position Li3AlN2H4, see reaction scheme (4a) [33,34]. Lithium

aluminum nitride, Li3AlN2, absorbs more than 5 wt% H2 forming

2LiH, LiNH2 and AlN, reaction (4b), which is another new RHC

system.

LiAlH4ðsÞ þ 2LiNH2ðsÞ ! ½Li3AlN2H4�ðsÞ þ 2H2ðgÞ
! Li3AlN2ðgÞ þ 4H2ðgÞ (4a)

2LiHðsÞ þ LiNH2ðsÞ þ AlNðsÞ $ Li3AlN2ðsÞ þ 2H2ðgÞ
(4b)

The most successful reactive hydride composite was discovered

independently by the research groups of Vajo, HRL Laboratories,

California, USA and Dornheim, Klassen, Bormann and co-workers

at HZG, Hamburg, Germany, namely LiBH4–MgH2 [35,36]. The

great advantage is that the endothermic dehydrogenation of the

two hydrides in the composite 2LiBH4–MgH2 is followed by the

exothermic formation of MgB2, see reaction (5). The total reaction

enthalpy is thereby lowered to a calculated value of, DHdec � 46 kJ/

(mol H2) corresponding to a calculated decomposition tempera-

ture of T � 169 8C (at p(H2) = 1 bar) [35,37,38]. The hydrogen

absorption is facilitated from the MgB2–LiH composite and occurs

at p(H2) = 50 bar and T < 300 8C. These conditions are substan-

tially more favorable than those of LiBH4 and are considered a

breakthrough in utilizing borohydrides for reversible hydrogen

storage. The full reversibility of the LiBH4–MgH2 system is only

obtained when the decomposition occurs in a hydrogen back

pressure of p(H2) � 1–5 bar, which facilitates the formation of

MgB2 possibly owing to suppression of the individual decomposi-

tion of LiBH4 [38–41]. In fact, hydrogen release and uptake is a two-

step reaction as shown in reaction scheme (5).

2LiBH4ðsÞ þ MgH2ðsÞ $ 2LiBH4ðsÞ þ MgðsÞ þ H2ðgÞ
$ 2LiHðsÞ þ MgB2ðsÞ þ 4H2ðgÞ (5)

A similar reaction occurs for a magnesium-rich system,

0.3LiBH4–MgH2, during decomposition in p(H2) > 1 bar, that is,

formation of MgB2, whereas a- and b-alloys of Li1�xMgx are formed

under a dynamic vacuum [42–44]. A number of other promising

reactive hydride composites have also been described, for example,

NaBH4–MgH2 and Ca(BH4)2–MgH2 [36,45–50]. Additionally, some

multicomponent systems have been developed such as LiBH4–

MgH2–LaH3 and Ca(BH4)2–LiBH4–MgH2. They benefit from high

cyclic stability and high hydrogen capacity [51,52].

Dihydrogen-bonding – a new approach for hydrogen
elimination
The strength and directionality of dihydrogen bonds, Hd+� � �–dH,

appear to be comparable to conventional hydrogen bonds. The

three intermolecular O–Hd+� � �–dH–B dihydrogen bonds in the

compound NaBH4�2H2O are in the range 1.77–1.95 Å and shorter
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than H� � �H distances within the BH4
– anion, which are ca. 2.0 Å

[53]. Indeed, it suggests that the dihydrogen bonds may facilitate

hydrogen elimination during thermolysis at moderate tempera-

tures. Metal borohydrides are often hygroscopic and in some cases

new crystalline compounds are formed by the absorption of water.

NaBH4�2H2O decomposes upon heating at �40 8C to NaBH4 and

2H2O, which at T > 40 8C slowly react to release hydrogen. Thus,

the hydrate NaBH4�2H2O does not directly release hydrogen, but

decomposes into anhydrous NaBH4 and water [53]. Similarly,

lithium borohydride exposed to air releases hydrogen at �65 8C
possibly due to a reaction between LiBH4 and H2O [54].

Metal borohydride ammoniates, M–BH4–NH3

Ammonia, NH3, is catalytically split to N2 and H2 and is a candi-

date for on-board hydrogen storage as a result of its high hydrogen

content (17.3 wt%) and the ability to store 30% more energy pr.

volume than liquid hydrogen [55]. However, due to the toxicity of

NH3 there are substantial safety issues that hamper widespread

utilization. Ammonia reacts with metal borohydrides by coordi-

nation to the metal and by formation of dihydrogen bonds to

BH4
–. Metal borohydride ammoniates, M(BH4)m�nNH3, were discov-

ered in the 1950s and have recently attracted significant attention

as potential hydrogen storage materials, mainly for three reasons.

First, metal borohydride ammoniates often have high hydrogen

capacities and significantly lower dehydrogenation temperatures

compared to the metal borohydride owing to the dihydrogen

elimination of hydrogen. Destabilization is observed for borohy-

drides with low electronegativity. For example, Co-catalyzed

Li(NH3)4/3BH4 (i.e. 2/3Li(NH3)BH4 and 1/3Li(NH3)2BH4 with

equivalent protic and hydridic hydrogen atoms), releases ca.

17.8 wt% of H2 in a closed system in the temperature range

135–250 8C, in contrast to LiBH4 which release H2 at T > �380 8C,

8C, see Fig. 1 [56]. In fact, this is a solid state-gas reaction between

LiBH4 and NH3. Secondly, unstable metal borohydrides with a

high electronegativity are stabilized by NH3 as demonstrated for

several metal borohydrides, such as Zn(BH4)2�nNH3 and

Al(BH4)3�nNH3 [57,58]. Ammonia always coordinates directly to

the metal and may prevent formation of neutral volatile molecular

borohydrides or reduction of the metal. Al(BH4)3 is among the

borohydrides with highest capacity (16.9 wt%), but is unstable and

volatile (Tbp � 44 8C). However, Al(BH4)3�6NH3 is stable and

releases 11.8 wt% of H2 (purity 95%) with Tmax at 168 8C [59].

Thirdly, the composition of the released gas depends on the ratio

between NH3 and BH4 coordinated to the metal, excess of NH3

provides increased tendency to release ammonia, that is, ammonia

release from M(BH4)m�nNH3 for n/m > 1 [60]. For instance, NH3 is

released from Mg(BH4)2�6NH3, while mainly H2 is released from

Mg(BH4)2�2NH3, see Fig. 2 [61]. Metals with low electronegativity

tend to release NH3 upon heating in open systems (p(NH3) � 0),

but H2 in closed systems [56,62]. Metals with higher electronega-

tivity coordinate more strongly to NH3 giving rise to a collapse of

the structure and release of H2 by dihydrogen elimination in the

temperature range �100 to �200 8C. This may prevent the release

of diborane from the more unstable metal borohydrides. A corre-

lation between decomposition temperature and electronegativity

of the metal coordinating to NH3 and BH4 is observed in Fig. 1

represented by a dotted line.

In addition to the monometallic borohydride ammoniates, a

few bimetallic borohydride ammoniates have been synthesized

[60,63–65]. The first example, Li2Al(BH4)5�6NH3, has a remarkable

structure consisting of ordered [Al(NH3)6]3+ ammine complexes

and [Li2(BH4)5]3� complex anions and reveal attractive decom-

position properties [60].

Ammonia is detrimental for low temperature fuel cells, and the

NH3/BH4 ratio (n/m) requires tailoring to avoid ammonia release.

Metal borohydrides readily react with ammonia to obtain

M(BH4)m�nNH3. A series of calcium borohydride ammoniates,

Ca(BH4)2�nNH3 (n = 1, 2, 4, 6), can be obtained by a sequential

heating procedure [62,66]. Some metal borohydride ammoniates

with low n/m ratio have successfully been prepared by metathesis

reactions between metal chloride ammoniates and lithium bor-

ohydride [67]. The amount of NH3 is adjusted by partial release of

NH3 from the metal chloride prior to the synthesis. The mechan-

ochemical approach facilitates formation of Zn(BH4)2�2NH3, while

Zn(BH4)2�4NH3 is obtained by solvent-based methods [57]. This

method introduces significant amounts of LiCl in the final pro-

duct. Thus, development of new synthesis routes providing halide

free materials with specific n/m ratios is important.

Metal borohydride amides, M–BH4–NH2

An alternative approach to combine partially positive H atoms to

hydridic hydrogen in metal borohydrides is by using metal amides,

M(NH2)n. Numerous combinations between alkali and alkaline

earth metal amides and borohydrides have been investigated, for

example, Mg(BH4)2–LiNH2 [68], Ca(BH4)2–Mg(NH2)2 [69], and

LiBH4–Mg(NH2)2 [70]. As discussed above, LiBH4–2LiNH2 is an

example of a reactive hydride composite with dihydrogen bonding

[32]. Changing the reactant ratio LiBH4–LiNH2 to (1:1) or (1:3)

gives rise to compounds with different chemical compositions,

Li2(BH4)(NH2) or Li4(BH4)(NH2)3, which are also good lithium ion

conductors [71]. The detailed crystal structures are known for

Materials Today � Volume 17, Number 3 �April 2014 RESEARCH

FIGURE 1

Experimentally observed decomposition temperatures, Tdec, for selected

metal borohydrides and metal borohydride ammoniates plotted as a

function of the electronegativity, xp, of the metal. Metal borohydrides with

low electronegativity are destabilized by ammoniate formation while those
with higher electronegativity are stabilized. The dashed line indicates a

correlation between decomposition temperatures and electronegativity for

metal borohydrides ammoniates and a new approach for rational design of
materials properties.
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Li4(BH4)(NH2)3 and Li2(BH4)(NH2) revealing that the borohydride

and amide groups remain [72–74].

To the best of our knowledge, the LiBH4–LiNH2 system is unique

compared to the other metal borohydride amide systems in the

sense that new quaternary structures are readily formed by

mechanochemical treatment. In all other systems a physical mix-

ture is obtained. The physical mixtures typically react during

thermal treatment and decompose at lower temperatures com-

pared to the individual components, but without forming boro-

hydride-amide complexes. However, recently Mg(BH4)(NH2) was

prepared by combined mechanochemical and thermal treatment

of Mg(BH4)2–Mg(NH2)2 [75].

Ammonia borane and derivatives
Ammonia borane, NH3BH3 (AB) has attracted significant attention

owing to its extreme hydrogen capacities of rm = 19.6 wt% H2,

rV = 146 g H2/L, and air stability [76]. Solid crystalline ammonia

borane has an intermolecular dihydrogen bond network and is not

hygroscopic unlike borohydrides. This compound, NH3BH3 releases

one equivalent of hydrogen in each of the three decomposition

steps forming polyaminoborane, [NH2BH2]n (90–120 8C), polyimi-

noborane, [NHBH]n (120–200 8C) and finally boron nitride, BN

(>500 8C) [76]. However, the hydrogen release is accompanied by

toxic by-products, such as ammonia (NH3), diborane (B2H6) and

borazine (N3B3H3). Furthermore, the decomposition is exothermic

(DHdec = �21 kJ/mol H2), hence non-reversible [77]. However, sig-

nificantly improved properties of NH3BH3 were obtained by infil-

tration in ordered mesoporous silica facilitating enhanced kinetics

(faster hydrogen release) at lower temperatures with reduced bor-

azine emission and improved thermodynamics, DHdec = �1 kJ/mol

H2 [78]. Additionally, the work by Autrey and co-workers [78]

initiated the focus on nanoconfinement as a tool to improve

kinetics and possibly thermodynamics of hydrogen storage materi-

als [79]. More recently, nano-sized Co and Ni additives in ammonia

borane were observed to improve the kinetics and suppress borazine

emission and foaming [80].

An even more hydrogen-rich compound can be prepared: ammo-

nium borohydride, NH4BH4. It has the highest hydrogen content of

solid-state materials reported to date (rm = 24.5 wt% H2, rv = 151 g

H2/L) and releases 3 equivalents of hydrogen (�18 wt% H2) in three

distinct exothermic steps at T < 160 8C [81]. However, NH4BH4

slowly decomposes at RT with a half-life of �6 h to a diammoniate

of diborane (NH3)2BH2(BH4) (DADB) and hydrogen. For long-term

storage NH4BH4 must be kept at T < �40 8C. Recently, nanocon-

fined NH4BH4 in mesoporous silica was investigated and appears to

be destabilized and more rapidly decomposes to DADB [82].

The complicated synthesis methods have hampered the

detailed investigation of (NH3)2BH2(BH4). However, recently a

mechanochemical reaction between NH4BH4 and NH3BH3 was

discovered [83], see scheme (6).

NH4BH4ðsÞ þ NH3BH3ðsÞ ! ½ðNH3Þ2BH2�½BH4�ðsÞ þ H2ðgÞ
(6)

DADB decomposes in reaction steps similar to AB, but with a

slightly lower onset temperature, faster kinetics and no significant

induction period prior to hydrogen release, possibly due to DADB

known to be an intermediate in the decomposition of AB [84].

Metal amidoboranes, M(NH2BH3)n, are synthesized by reacting a

metal hydride with ammonia borane using either mechanochem-

istry or solvent-based methods [85], see reaction scheme (7).

MHnðsÞ þ nNH3BH3ðsÞ ! MðNH2BH3ÞnðsÞ þ nH2ðgÞ (7)

RESEARCH Materials Today �Volume 17, Number 3 �April 2014

FIGURE 2

The crystal structures of Mg(BH4)2�6NH3 (top) and Mg(BH4)2�2NH3. NH3 (N green, H light gray) coordinates to magnesium (orange) in the crystal structures,
while BH4 (blue tetrahedra) coordinates either to the metal or acts as a counter ion in the solid state [61]. For clarity, hydrogen atoms in the ammonia

molecules are not shown in Mg(BH4)2�6NH3.
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Since 2007, a series of metal amidoboranes, M(NH2BH3)n

(M = Li, Na, K, Ca, Sr), have been synthesized according to reaction

scheme (7) and structurally investigated [86–89]. In contrast,

Y(NH2BH3)3 is synthesized by a metathesis reaction between

MNH2BH3 and YX3 (M = Li, Na; X = Cl, F) [90]. The magnesium

analog, Mg(NH2BH3)2, was previously considered unstable, but

was recently synthesized [91]. Metathesis reaction between FeCl3
and LiNH2BH3 in THF was unsuccessful, but LiCl and polymeric

[Fe(HN = BH)3]n was formed together with the release of 1.5 equiv.

H2 in THF at RT [92]. In general, metal amidoboranes have high

hydrogen content, good kinetics and low decomposition tempera-

tures. LiNH2BH3 decomposes in the temperature range from 75 to

95 8C and releases 10.9 wt% H2 according to scheme (8) [86].

Formation of metal amidoboranes is considered an approach to

prevent release of borazine from ammonia borane [93].

LiNH2BH3ðsÞ ! LiNBHðsÞ þ 2H2ðgÞ (8)

Metal amidoborane ammoniates, M(NH2BH3)n�xNH3 are known

for M = Mg, Ca [94,95]. These compounds tend to release NH3

below 100 8C in an open system (endothermic reaction) and H2 in

a closed system (exothermic). Recently, hydrogen release was

observed from an endothermic reaction from composites of

Mg(NH2BH3)2�2NH3 and NaH/KH [96].

In 2010, the first metal borohydride–ammonia borane complexes,

M–BH4–NH3BH3 were reported, that is, Li2(BH4)2NH3BH3 and

Ca(BH4)2(NH3BH3)2 [97]. Since then, LiBH4(NH3BH3) [98], and

Mg(BH4)2(NH3BH3)2 [99,100] have also been reported, and they

are all prepared by mechanochemical treatment of AB and

M(BH4)n (M = Li, Mg, Ca). In contrast, MBH4–NH3BH3 (M = Na,

K, Cs, Rb) do not form new compounds during mechanochemical

treatment [99,101]. This class of materials have high hydrogen

capacities and low decomposition temperatures, for example,

Mg(BH4)2(NH3BH3)2 (rm = 17.4 wt% H2, rV = 137 g H2/L) melts

at �48 8C and has an onset temperature for hydrogen release at

75 8C [99]. However, the thermal decomposition of these com-

pounds still involves the release of diborane and borazine similar

to NH3BH3 reflecting a weak interaction between the borohydride

groups and ammonia borane. This is explained by the crystal

structures of M(BH4)n(NH3BH3)x, where AB keeps its molecular

form [97]. The crystal structure of Mg(BH4)2(NH3BH3)2 is shown in

Fig. 3. Both borohydride groups and AB act as terminal ligands,

and molecular complexes are linked in the crystal structure via

dihydrogen bonds of N–Hd+� � �–dH–B (<2 Å).

Hydrazine and hydrazine borane
Hydrazine, N2H4 (12.5 wt% H2) decomposes via two competing

reactions forming N2, H2 and NH3. Recently a new class of hydro-

gen storage materials, borohydride hydrazinates, was successfully

synthesized, for example, LiBH4�NH2NH2 and LiBH4�2NH2NH2

[102]. Approximately 13.0 wt% H2 is released from LiBH4�NH2NH2

2NH2 at 140 8C in the presence of Fe–B catalysts. However, this

again leads to the formation of the stable compounds Li3BN2 and

BN according to reaction scheme (9).

3ðLiBH4�N2H4ÞðsÞ ! Li3BN2ðsÞ þ 2BNðsÞ
þ N2ðgÞ þ 12H2ðsÞ (9)

Furthermore, the decomposition product of AB, polyiminobor-

ane reacts with hydrazine in THF solution to form hydrazine

borane (N2H4BH3, HB). HB (15.4 wt% H2) melts at 61 8C at which

point the decomposition initiates yielding NH2NH2, (NHBH2)2, H2

and NH3. Interestingly, mechanochemical treatment of

LiH–HB (1:1) and (1:3) provided the first metal hydrazinoborane,

LiN2H3BH3, and its hydrazine borane adduct LiN2H3

BH3�2N2H4BH3 [103]. The metal hydrazinoboranes exhibit drama-

tically improved dehydrogenation properties compared to hydra-

zine borane (N2H4BH3) with nearly complete dehydrogenation in

the temperature range 50–225 8C releasing high purity hydrogen.

However, the decomposition for both compounds is exothermic,

hence non-reversible.

Reversibility of B–N based hydrides
Generally, the B–N compounds discussed in this review paper

show high hydrogen storage capacities both gravimetrically and

volumetrically and often release hydrogen at low temperatures see

Table 1. However, they all suffer from limited reversibility due to

the formation of stable boron nitrides in the decomposed residue.

Therefore, further research in kinetics and thermodynamics

Materials Today � Volume 17, Number 3 �April 2014 RESEARCH

FIGURE 3

Crystal structure of Mg(BH4)2(NH3BH3)2. Molecular complexes of
[Mg(BH4)2(NH3BH3)2] are connected by dihydrogen bonds (dotted lines).

Mg, N, B and H are represented by orange, green, blue and light gray

spheres and the [BH4] complexes as blue tetrahedra [99].

FIGURE 4

Reaction mechanism for ammonia borane, NH3BH3, regeneration from
polyiminoborane, ‘BNH’ using hydrazine, N2H4 (modified from Ref. [108]).
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related to hydrogen uptake is needed and further investigation of

partly decomposed B–N–H materials may be fruitful.

Hydrogen uptake in fully decomposed Mg(BH4)2 is possible, but

requires extreme conditions: 500 8C and p(H2) = 950 bar [106,107].

However, partial dehydrogenation of Mg(BH4)2 at lower tempera-

tures (250 8C) forms Mg(B3H8)2, which is more readily rehydroge-

nated (250 8C, p(H2) = 120 bar, 48 h). A similar approach may be

successful for B–N–H based compounds. Recently, the regenera-

tion of ammonia borane is reported to take place from polyimi-

noborane by reacting with hydrazine in liquid ammonia at 40 8C
within 24 h [108]. Fig. 4 illustrates the ideal cycle for reversible

hydrogen storage using NH3BH3. Importantly, this cycle is closed

and the generation of AB from hydrazine takes place in one step

and does not involve any noble metal catalysts. This discovery is

among the most important breakthroughs for possible utilization

of ammonia borane for hydrogen storage and at the same time

reveals new classes of materials based on ammonia borane and

hydrazine.

Conclusion
This review illustrates the extreme diversity in the fascinating

chemistry of hydrogen, regarding the variety of chemical bonds

and compounds that can be created. The kinetic and thermody-

namic properties and hydrogen storage densities can be tailored,

which reveal new perspectives for the development of solid-state

hydrogen storage materials. Dihydrogen bonding provides hydro-

gen elimination at moderate temperatures but reformation of this

type of bond is difficult. A similar drawback is observed for

ammoniates and amides of metal borohydrides, which otherwise

provide extreme hydrogen densities and low decomposition tem-

peratures. Fortunately, the recent discovery of ammonia borane

regeneration using hydrazine reveals that further research in

partial dehydrogenation may provide new reversible reaction routes

for hydrogen release and uptake at moderate conditions. An over-

whelming variety of novel boron and nitrogen based materials have

been discovered over the past few years, which provide new

approaches for the rational design of materials with tailored proper-

ties and new hope for the discovery of novel types of hydrogen

storage materials. Further research within boron and nitrogen

based hydrides may significantly support the implementation of

hydrogen as a future energy carrier, for applications including mobile

devices, in a sustainable future for humanity.
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