81 research outputs found

    NMR imaging of the soliton lattice profile in the spin-Peierls compound CuGeO_3

    Full text link
    In the spin-Peierls compound CuGeO3_{3}, the commensurate-incommensurate transition concerning the modulation of atomic position and the local spin-polarization is fully monitored at T=0 by the application of an external magnetic field (HH) above a threshold value Hc≃H_{c}\simeq 13 Tesla. The solitonic profile of the spin-polarization, as well as its absolute magnitude, has been precisely imaged from 65Cu^{65}Cu NMR lineshapes obtained for h=(H−Hc)/Hch=(H-H_{c})/H_{c} varying from 0.0015 to 2. This offers a unique possibility to test quantitatively the various numerical and analytical methods developed to solve a generic Hamiltonian in 1-D physics, namely strongly interacting fermions in presence of electron-phonon coupling at arbitrary band filling.Comment: 3 pages, 4 eps figures, RevTeX, submitted to Physical Review Lette

    Zero Temperature Phase Transition in Spin-ladders: Phase Diagram and Dynamical studies of Cu(Hp)Cl

    Full text link
    In a magnetic field, spin-ladders undergo two zero-temperature phase transitions at the critical fields Hc1 and Hc2. An experimental review of static and dynamical properties of spin-ladders close to these critical points is presented. The scaling functions, universal to all quantum critical points in one-dimension, are extracted from (a) the thermodynamic quantities (magnetization) and (b) the dynamical functions (NMR relaxation). A simple mapping of strongly coupled spin ladders in a magnetic field on the exactly solvable XXZ model enables to make detailed fits and gives an overall understanding of a broad class of quantum magnets in their gapless phase (between Hc1 and Hc2). In this phase, the low temperature divergence of the NMR relaxation demonstrates its Luttinger liquid nature as well as the novel quantum critical regime at higher temperature. The general behaviour close these quantum critical points can be tied to known models of quantum magnetism.Comment: few corrections made, 15 pages, to be published in European Journal of Physics

    Atomic and Electronic Structure of a Rashba pp-nn Junction at the BiTeI Surface

    Get PDF
    The non-centrosymmetric semiconductor BiTeI exhibits two distinct surface terminations that support spin-split Rashba surface states. Their ambipolarity can be exploited for creating spin-polarized pp-nn junctions at the boundaries between domains with different surface terminations. We use scanning tunneling microscopy/spectroscopy (STM/STS) to locate such junctions and investigate their atomic and electronic properties. The Te- and I-terminated surfaces are identified owing to their distinct chemical reactivity, and an apparent height mismatch of electronic origin. The Rashba surface states are revealed in the STS spectra by the onset of a van Hove singularity at the band edge. Eventually, an electronic depletion is found on interfacial Te atoms, consistent with the formation of a space charge area in typical pp-nn junctions.Comment: 5 pages, 4 figure

    Giant alkali-metal-induced lattice relaxation as the driving force of the insulating phase of alkali-metal/Si(111):B

    Full text link
    Ab initio density-functional theory calculations, photoemission spectroscopy (PES), scanning tunneling microscopy, and spectroscopy (STM, STS) have been used to solve the 2√3 x 2√3R30 surface reconstruction observed previously by LEED on 0.5 ML K/Si:B. A large K-induced vertical lattice relaxation occurring only for 3/4 of Si adatoms is shown to quantitatively explain both the chemical shift of 1.14 eV and the ratio 1/3 measured on the two distinct B 1s core levels. A gap is observed between valence and conduction surface bands by ARPES and STS which is shown to have mainly a Si-B character. Finally, the calculated STM images agree with our experimental results. This work solves the controversy about the origin of the insulating ground state of alkali-metal/Si(111):B semiconducting interfaces which were believed previously to be related to many-body effectsThis work has received the financial support of the French ANR SURMOTT program (ANR-09-BLAN- 0210-01) and the Spanish MICIIN under Project No. FIS2010-1604

    Charge Order Driven spin-Peierls Transition in NaV2O5

    Full text link
    We conclude from 23Na and 51V NMR measurements in NaxV2O5(x=0.996) a charge ordering transition starting at T=37 K and preceding the lattice distortion and the formation of a spin gap Delta=106 K at Tc=34.7 K. Above Tc, only a single Na site is observed in agreement with the Pmmn space group of this first 1/4-filled ladder system. Below Tc=34.7 K, this line evolves into eight distinct 23Na quadrupolar split lines, which evidences a lattice distortion with, at least, a doubling of the unit cell in the (a,b) plane. A model for this unique transition implying both charge density wave and spin-Peierls order is discussed.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Self-ordered nanoporous lattice formed by chlorine atoms on Au(111)

    Get PDF
    A self-ordered nanoporous lattice formed by individual chlorine atoms on the Au(111) surface has been studied with low-temperature scanning tunneling microscopy, low-energy electron diffraction, and density functional theory calculations. We have found out that room-temperature adsorption of 0.09–0.30 monolayers of chlorine on Au(111) followed by cooling below 110 K results in the spontaneous formation of a nanoporous quasihexagonal structure with a periodicity of 25–38 Å depending on the initial chlorine coverage. The driving force of the superstructure formation is attributed to the substrate-mediated elastic interaction

    Ultrafast Atomic Diffusion Inducing a Reversible (2√3×2√3)R30°↔(√3×√3)R30° Transition on Sn/Si(111)∶B

    Get PDF
    Dynamical phase transitions are a challenge to identify experimentally and describe theoretically. Here, we study a new reconstruction of Sn on silicon and observe a reversible transition where the surface unit cell divides its area by a factor of 4 at 250 °C. This phase transition is explained by the 24-fold degeneracy of the ground state and a novel diffusive mechanism, where four Sn atoms arranged in a snakelike cluster wiggle at the surface exploring collectively the different quantum mechanical ground states.This work was supported by the French Agence Nationale de la Recherche (ANR) under Contract SurMott, No. NT-09-618999, and by Spanish Ministerio de Economía y Competitividad, Project No. MAT2014-59966-R

    Possible Localized Modes in the Uniform Quantum Heisenberg Chains of Sr2CuO3

    Full text link
    A model of mobile-bond defects is tentatively proposed to analyze the "anomalies" observed on the NMR spectrum of the quantum Heisenberg chains of Sr2CuO3. A bond-defect is a local change in the exchange coupling. It results in a local alternating magnetization (LAM), which when the defect moves, creates a flipping process of the local field seen by each nuclear spin. At low temperature, when the overlap of the LAM becomes large, the defects form a periodic structure, which extends over almost all the chains. In that regime, the density of bond-defects decreases linearly with T.Comment: 4 pages + 3 figures. To appear in Physical Review

    Zigzag Charge Ordering in alpha'-NaV2O5

    Full text link
    23Na NMR spectrum measurements in alpha'-NaV2O5 with a single- crystalline sample are reported. In the charge-ordered phase, the number of inequivalent Na sites observed is more than that expected from the low-temperature structures of space group Fmm2 reported so far. This disagreement indicates that the real structure including both atomic displacement and charge disproportionation is of lower symmetry. It is suggested that zigzag ordering is the most probable. The temperature variation of the NMR spectra near the transition temperature is incompatible with that of second-order transitions. It is thus concluded that the charge ordering transition is first-order.Comment: 4 pages, 5 eps figures, submitted to J. Phys. Soc. Jp

    Cu Nuclear Quadrupole Resonance Study of the Spin-Peierls Compound Cu1-xMgxGeO3: A Possibility of Precursory Dimerization

    Full text link
    We report on a zero-field 63Cu nuclear quadrupole resonance (NQR) study of nonmagnetic Mg impurity substituted Cu1-xMgxGeO3 (single crystals; the spin-Peierls transition temperature Tsp~14, 13.5, and 11 K for x=0, 0.0043, and 0.020) in a temperature range from 4.2 K to 250 K. We found that below T*~77 K, Cu NQR spectra are broadened and nonexponential Cu nuclear spin-lattice relaxation increases for undoped and more remarkably for Mg-doped samples. The results indicate that random lattice distortion and impurity-induced spins appear below T*, which we associate with a precursor of the spin-Peierls transition. Conventional magnetic critical slowing down does not appear down to 4.2 K below Tsp.Comment: 4 pages, 4 figure
    • …
    corecore