47 research outputs found

    Nifedipin ublažava djelovanje kokaina na enzimsku aktivnost u mozgu i jetri te smanjuje njegovo izlučivanje putem mokraće

    Get PDF
    The aim of this study was to see how nifedipine counters the effects of cocaine on hepatic and brain enzymatic activity in rats and whether it affects urinary excretion of cocaine. Male Wistar rats were divided in four groups of six: control, nifedipine group (5 mg kg-1 i.p. a day for five days); cocaine group (15 mg kg-1 i.p. a day for five days), and the nifedipine+cocaine group. Twenty-four hours after the last administration, we measured neuronal nitric oxide synthase (nNOS) activity in the brain and cytochrome P450 quantity, ethylmorphine-N-demethylase, and anilinehydroxylase activity in the liver. Urine samples were collected 24 h after the last cocaine and cocaine+nifedipine administration. Urinary cocaine concentration was determined using the GC/MS method. Cocaine administration increased brain nNOS activity by 55 % (p<0.05) in respect to control, which indicates the development of tolerance and dependence. In the combination group, nifedipine decreased the nNOS activity in respect to the cocaine-only group. In the liver, cocaine significantly decreased and nifedipine significantly increased cytochrome P450, ethylmorphine-N-demethylase, and anilinehydroxylase in respect to control. In combination, nifedipine successfully countered cocaine effects on these enzymes. Urine cocaine excretion in the cocaine+nifedipine group significantly dropped (by 35 %) compared to the cocaine-only group. Our results have confirmed the effects of nifedipine against cocaine tolerance and development of dependence, most likely due to metabolic interactions between them.Cilj je ovoga istraživanja bio utvrditi kako nifedipin ublažava djelovanje kokaina na enzimsku aktivnost u mozgu i jetri Wistar štakora te utječe li na njegovo izlučivanje putem mokraće. Mužjaci su podijeljeni u četiri skupine po šest jedinki: kontrolnu skupinu, nifedipinsku skupinu koja je pet dana intraperitonealno primala nifedipin u dozi od 5 mg kg-1; skupinu koja je pet dana primala kokain u dozi od 15 mg kg-1 na dan te skupinu koja je zajedno primala nifedipin i kokain u odgovarajućim dozama. Dvadeset i četiri sata nakon posljednje doze izmjerena je enzimska aktivnost sintaze dušičnoga oksida (nNOS) u mozgu, razina citokroma P450 te aktivnosti enzima etilmorfi n-N-demetilaze i anilinhidroksilaze u jetri štakora. Uzorci mokraće prikupljeni su 24 sata nakon posljednje doze kokaina odnosno kombinacije nifedipina i kokaina. Koncentracija kokaina u mokraći izmjerena je s pomoću vezanog sustava plinske kromatografi je i spektrometrije masa. Kokain je povećao aktivnost nNOS-a u mozgu za 55 % (p<0,05) u odnosu na kontrolnu skupinu, što upućuje na stvaranje tolerancije i ovisnosti. U kombiniranoj skupini nifedipin je značajno smanjio aktivnost nNOS-a u odnosu na skupinu koja je primila samo kokain. Kokain je značajno snizio, a nifedipin značajno povisio razinu citokroma P450 u jetri te aktivnost etilmorfi n-N-demetilaze i anilinhidroksilaze u odnosu na kontrolnu skupinu. U kombiniranoj skupini nifedipin je uspješno ublažio djelovanje kokaina na aktivnost spomenutih enzima. Izlučivanje kokaina putem mokraće u kombiniranoj skupini bilo je značajno manje (35 %) nego u skupini koja je primala samo kokain. Ovi rezultati potvrđuju da nifedipin štiti od djelovanja kokaina i stvaranja ovisnosti, najvjerojatnije zbog interakcija u metabolizmu dvaju spojeva

    Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The steroid and xenobiotic receptor, SXR, is an orphan nuclear receptor that regulates metabolism of diverse dietary, endobiotic, and xenobiotic compounds. SXR is expressed at high levels in the liver and intestine, and at lower levels in breast and other tissues where its function was unknown. Since many breast cancer preventive and therapeutic compounds are SXR activators, we hypothesized that some beneficial effects of these compounds are mediated through SXR.</p> <p>Methods</p> <p>To test this hypothesis, we measured proliferation of breast cancer cells in response to SXR activators and evaluated consequent changes in the expression of genes critical for proliferation and cell-cycle control using quantitative RT-PCR and western blotting. Results were confirmed using siRNA-mediated gene knockdown. Statistical analysis was by t-test or ANOVA and a P value ≤ 0.05 was considered to be significant.</p> <p>Results</p> <p>Many structurally and functionally distinct SXR activators inhibited the proliferation of MCF-7 and ZR-75-1 breast cancer cells by inducing cell cycle arrest at the G1/S phase followed by apoptosis. Decreased growth in response to SXR activation was associated with stabilization of p53 and up-regulation of cell cycle regulatory and pro-apoptotic genes such as p21, PUMA and BAX. These gene expression changes were preceded by an increase in inducible nitric oxide synthase and nitric oxide in these cells. Inhibition of iNOS blocked the induction of p53. p53 knockdown inhibited up-regulation of p21 and BAX. We infer that NO is required for p53 induction and that p53 is required for up-regulation of cell cycle regulatory and apoptotic genes in this system. SXR activator-induced increases in iNOS levels were inhibited by siRNA-mediated knockdown of SXR, indicating that SXR activation is necessary for subsequent regulation of iNOS expression.</p> <p>Conclusion</p> <p>We conclude that activation of SXR is anti-proliferative in p53 wild type breast cancer cells and that this effect is mechanistically dependent upon the local production of NO and NO-dependent up-regulation of p53. These findings reveal a novel biological function for SXR and suggest that a subset of SXR activators may function as effective therapeutic and chemo-preventative agents for certain types of breast cancers.</p

    Extensive retreat of Greenland tidewater glaciers 2000-2010

    Get PDF
    Overall mass loss from the Greenland ice sheet nearly doubled during the early 2000s resulting in an increased contribution to sea-level rise, with this step-change being mainly attributed to the widespread frontal retreat and accompanying dynamic thinning of tidewater glaciers. Changes in glacier calving-front positions are easily derived from remotely sensed imagery and provide a record of dynamic change. However, ice-sheet-wide studies of calving fronts have been either spatially or temporally limited. In this study multiple calving-front positions were derived for 199 Greenland marine-terminating outlet glaciers with width greater than 1 km using Landsat imagery for the 11-year period 2000–2010 in order to identify regional seasonal and inter-annual variations. During this period, outlet glaciers were characterized by sustained and substantial retreat summing to more than 267 km, with only 11 glaciers showing overall advance. In general, the pattern of mass loss detected by GRACE (Gravity Recovery and Climate Experiment) and other measurements is reflected in the calving record of Greenland glaciers. Our results suggest several regions in the south and east of the ice sheet likely share controls on their dynamic changes, but no simple single control is apparent

    An integrated geophysical and GIS based approach improves estimation of peatland carbon stocks

    No full text
    Estimations of peatland carbon stocks often use generalised values for peat thickness and carbon content. Ground penetrating radar (GPR), a rapid technique for field data collection, has been increasingly demonstrated as an appropriate method of mapping peat thickness. Light Detection and Ranging (LiDAR) data as a method for understanding peatland surface elevation are also becoming more widely available. Reliable mapping and quantification of site-specific carbon stocks (e.g. upland raised bogs) is therefore, becoming increasingly feasible, providing a valuable contribution to regional, national and potentially global carbon stock assessments. This is particularly important because raised bogs, such as those found in South Wales are considerable carbon stores. They are, however, susceptible to climate warming owing to their southerly location within the UK. Accurate estimates of peatland carbon stocks has broader importance because world-wide peatland carbon stores are significant and threatened by climate change, posing a substantial challenge not only due to climate feedbacks if this stored carbon is released into the atmosphere, but also the impact on the other ecosystem services that they provide. Here, we assess the value of an integrated GPR, LiDAR and Geographic Information System (GIS) approach to improve estimation of regional carbon stocks. We apply the approach to three ombrotrophic raised bogs in South Wales, UK, selected for their conservation value and their topographically-confined raised bog form. GPR and LiDAR are found to be well suited, respectively, to mapping peat thickness at bog scale and surface elevation, thus allowing surface and basal topographies to be evaluated using GIS. In turn, this allows peat volumes to be estimated. For the first time, we record values between 55,200 m3 and 163,000 m3 for the sites considered here. The greater confidence in these peat volume estimates results from the ability to calibrate the GPR velocity using a depth-to-target calibration with peat cores extracted at locations encompassing the deepest bog area. Peat thickness is mapped at the bog scale with near centimetre precision, improving the robustness of subsequent volume calculations and our understanding of the contribution of these small but numerous sites to regional carbon stocks. Our evaluation shows that GPR corresponds well with conventional manual probing but is minimally invasive and therefore less disturbing of sensitive peatland sites, while also offering improved coverage and spatial resolution with less time and cost. In combination with measured bulk density and organic carbon contents, these peat volumes allow carbon stocks to be estimated with greater confidence compared to conventional approaches, having values between 2181 ± 122 tonnes carbon and 6305 ± 351 tonnes carbon at our three sites

    Structural basis for recognition of 2′,5′-linked oligoadenylates by human ribonuclease L

    No full text
    An interferon-induced endoribonuclease, ribonuclease L (RNase L), is implicated in both the molecular mechanism of action of interferon and the fundamental control of RNA stability in mammalian cells. RNase L is catalytically active only after binding to an unusual activator molecule containing a 5′-phosphorylated 2′,5′-linked oligoadenylate (2-5A), in the N-terminal half. Here, we report the crystal structure of the N-terminal ankyrin repeat domain (ANK) of human RNase L complexed with the activator 2-5A. This is the first structural view of an ankyrin repeat structure directly interacting with a nucleic acid, rather than with a protein. The ANK domain folds into eight ankyrin repeat elements and forms an extended curved structure with a concave surface. The 2-5A molecule is accommodated at a concave site and directly interacts with ankyrin repeats 2–4. Interestingly, two structurally equivalent 2-5A binding motifs are found at repeats 2 and 4. The structural basis for 2-5A recognition by ANK is essential for designing stable 2-5As with a high likelihood of activating RNase L

    A Novel Selection Marker for Efficient DNA Cloning and Recombineering in E. coli

    Get PDF
    Production of recombinant DNA in bacterial cells is an essential technique in molecular biology. Plasmids are usually maintained in an E. coli host by antibiotic selection. However, there are only a few antibiotic-resistance markers available in common use. Here we report the adoption of a novel selection marker, mfabI (mutant fabI) for plasmid propagation in E. coli. mfabI expands the limited repertoire of selection markers and allows for more efficient molecular manipulation and plasmid propagation in E. coli. We show that mfabI is not only an efficient plasmid selection marker, but it also possesses unique activity that may facilitate molecular manipulation of unstable sequences. Furthermore, we have incorporated mfabI in the recombineering tool kit for generating mouse gene targeting vectors and demonstrate the advantage of using mfabI-containing recombineering vectors

    Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinal M cells.

    Get PDF
    Intestinal microfold (M) cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA) to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell-mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1⁺ dendritic cells (DCs) via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases
    corecore