140 research outputs found

    Revision of the genus Tapholeon Wells, 1967 (Copepoda, Harpacticoida, Laophontidae)

    Get PDF
    To date, only two species are known in the laophontid genus Tapholeon Wells, 1967 (Copepoda, Harpacticoida). In the present contribution, a redescription of the type species T. ornatus Wells, 1967, based on the type material, is provided. Furthermore, two new species are described from the coast of Kenya, T. inconspicuus sp. nov. and T. tenuis sp. nov. Two species, formerly attributed to Asellopsis Brady and Robertson, 1873 (namely A. arenicola Chappuis, 1954 and A. chappuisius Krishnaswamy, 1957), are allocated to Tapholeon based on the absence of sexual dimorphism in the swimming legs P2-P4. The former of the two species is redescribed based on additional material from the Comoros. An updated generic diagnosis and a key to the six species of Tapholeon are included

    Women's Education Level, Maternal Health Facilities, Abortion Legislation and Maternal Deaths: A Natural Experiment in Chile from 1957 to 2007

    Get PDF
    The aim of this study was to assess the main factors related to maternal mortality reduction in large time series available in Chile in context of the United Nations' Millennium Development Goals (MDGs).Time series of maternal mortality ratio (MMR) from official data (National Institute of Statistics, 1957-2007) along with parallel time series of education years, income per capita, fertility rate (TFR), birth order, clean water, sanitary sewer, and delivery by skilled attendants were analysed using autoregressive models (ARIMA). Historical changes on the mortality trend including the effect of different educational and maternal health policies implemented in 1965, and legislation that prohibited abortion in 1989 were assessed utilizing segmented regression techniques.During the 50-year study period, the MMR decreased from 293.7 to 18.2/100,000 live births, a decrease of 93.8%. Women's education level modulated the effects of TFR, birth order, delivery by skilled attendants, clean water, and sanitary sewer access. In the fully adjusted model, for every additional year of maternal education there was a corresponding decrease in the MMR of 29.3/100,000 live births. A rapid phase of decline between 1965 and 1981 (-13.29/100,000 live births each year) and a slow phase between 1981 and 2007 (-1.59/100,000 live births each year) were identified. After abortion was prohibited, the MMR decreased from 41.3 to 12.7 per 100,000 live births (-69.2%). The slope of the MMR did not appear to be altered by the change in abortion law.Increasing education level appears to favourably impact the downward trend in the MMR, modulating other key factors such as access and utilization of maternal health facilities, changes in women's reproductive behaviour and improvements of the sanitary system. Consequently, different MDGs can act synergistically to improve maternal health. The reduction in the MMR is not related to the legal status of abortion

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation

    Polymerization-Induced Phase Separation Formation of Structured Hydrogel Particles via Microfluidics for Scar Therapeutics

    No full text
    Abstract Excessive scar formation can form disabling contractures that result in a debilitating psychological outcome. Sustainable hydrophobic corticosteroid release in vivo is essential to regulate the wound healing process. Functional hydrogel particles are widely applied for sustainable release. However, due to the limited aqueous solubility of hydrophobic compounds, most of the corticosteroid is released from the hydrogels within seconds, causing undesirable scar formation and recurrence. In this study, a novel polymerization-induced phase separation is investigated to form well-defined polyethylene glycol diacrylate (PEGDA) core/alginate shell structured hydrogel particles using microfluidics without toxic organic solvents. Based on their wettability preference, hydrophobic corticosteroid-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles are compartmentalized in the PEGDA core during polymerization to control the corticosteroid release. The distribution of the PLGA nanoparticles is precisely regulated by the phase separation boundary and characterized using a fluorescent dye. The thickness of the shell and partition coefficients are determined using the UV intensity and irradiation period. Upon encapsulation of the PLGA nanoparticles within the poly(PEGDA) core, a long-term corticosteroid treatment is developed and effective scar therapeutic outcomes are evaluated using both in vitro and in vivo models
    corecore