104 research outputs found

    Voltage imaging reveals the dynamic electrical signatures of human breast cancer cells

    Get PDF
    Cancer cells feature a resting membrane potential (Vm) that is depolarized compared to normal cells, and express active ionic conductances, which factor directly in their pathophysiological behavior. Despite similarities to ‘excitable’ tissues, relatively little is known about cancer cell Vm dynamics. Here high-throughput, cellular-resolution Vm imaging reveals that Vm fluctuates dynamically in several breast cancer cell lines compared to non-cancerous MCF-10A cells. We characterize Vm fluctuations of hundreds of human triple-negative breast cancer MDA-MB-231 cells. By quantifying their Dynamic Electrical Signatures (DESs) through an unsupervised machine-learning protocol, we identify four classes ranging from "noisy” to “blinking/waving“. The Vm of MDA-MB-231 cells exhibits spontaneous, transient hyperpolarizations inhibited by the voltage-gated sodium channel blocker tetrodotoxin, and by calcium-activated potassium channel inhibitors apamin and iberiotoxin. The Vm of MCF-10A cells is comparatively static, but fluctuations increase following treatment with transforming growth factor-ÎČ1, a canonical inducer of the epithelial-to-mesenchymal transition. These data suggest that the ability to generate Vm fluctuations may be a property of hybrid epithelial-mesenchymal cells or those originated from luminal progenitors

    Novel degradable photocatalysts for wastewater treatment

    Get PDF
    The weakening of the manmade load on the environment has become a global goal of humanity. The accumulation of toxic substances in effl uents can increase the acceleration of pollution of the planet’s watersheds, resulting in biota pollution. To solve this problem, it is necessary to create photocatalysts that cause self-excitation under the ignition of light. Also, important parameters of photocatalysts are simple synthesis and low cost. This article demonstrates a one-step approach to the synthesis of carbon nanostructures (CNS) with photocatalytic activity. For this purpose, the “green chemistry ” method is used – hydrothermal treatment of various polysaccharides (sodium dextran sulfate (SDS), starch, pectin), which opens up the possibility of recycling products. A comprehensive study of the properties of the synthesized CNS has been carried out. To study the optical properties of CNS, absorption and luminescence spectroscopy, and IR spectroscopy, have been used. The CNS obtained have been successfully used in the processes of photocatalytic destruction of a model of the organic dye tartrazine, which is widely used in the fi ber and textile industries. The eff ect of lyophilization on the photocatalytic properties of ĐĄNS has been studied, and cytotoxicity has been evaluated

    Fast fluorescence microscopy for imaging the dynamics of embryonic development

    Get PDF
    Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field

    Posterior Association Networks and Functional Modules Inferred from Rich Phenotypes of Gene Perturbations

    Get PDF
    Combinatorial gene perturbations provide rich information for a systematic exploration of genetic interactions. Despite successful applications to bacteria and yeast, the scalability of this approach remains a major challenge for higher organisms such as humans. Here, we report a novel experimental and computational framework to efficiently address this challenge by limiting the ‘search space’ for important genetic interactions. We propose to integrate rich phenotypes of multiple single gene perturbations to robustly predict functional modules, which can subsequently be subjected to further experimental investigations such as combinatorial gene silencing. We present posterior association networks (PANs) to predict functional interactions between genes estimated using a Bayesian mixture modelling approach. The major advantage of this approach over conventional hypothesis tests is that prior knowledge can be incorporated to enhance predictive power. We demonstrate in a simulation study and on biological data, that integrating complementary information greatly improves prediction accuracy. To search for significant modules, we perform hierarchical clustering with multiscale bootstrap resampling. We demonstrate the power of the proposed methodologies in applications to Ewing's sarcoma and human adult stem cells using publicly available and custom generated data, respectively. In the former application, we identify a gene module including many confirmed and highly promising therapeutic targets. Genes in the module are also significantly overrepresented in signalling pathways that are known to be critical for proliferation of Ewing's sarcoma cells. In the latter application, we predict a functional network of chromatin factors controlling epidermal stem cell fate. Further examinations using ChIP-seq, ChIP-qPCR and RT-qPCR reveal that the basis of their genetic interactions may arise from transcriptional cross regulation. A Bioconductor package implementing PAN is freely available online at http://bioconductor.org/packages/release/bioc/html/PANR.html

    A Quantitative RNAi Screen for JNK Modifiers Identifies Pvr as a Novel Regulator of Drosophila Immune Signaling

    Get PDF
    Drosophila melanogaster responds to gram-negative bacterial challenges through the IMD pathway, a signal transduction cassette that is driven by the coordinated activities of JNK, NF-ÎșB and caspase modules. While many modifiers of NF-ÎșB activity were identified in cell culture and in vivo assays, the regulatory apparatus that determines JNK inputs into the IMD pathway is relatively unexplored. In this manuscript, we present the first quantitative screen of the entire genome of Drosophila for novel regulators of JNK activity in the IMD pathway. We identified a large number of gene products that negatively or positively impact on JNK activation in the IMD pathway. In particular, we identified the Pvr receptor tyrosine kinase as a potent inhibitor of JNK activation. In a series of in vivo and cell culture assays, we demonstrated that activation of the IMD pathway drives JNK-dependent expression of the Pvr ligands, Pvf2 and Pvf3, which in turn act through the Pvr/ERK MAP kinase pathway to attenuate the JNK and NF-ÎșB arms of the IMD pathway. Our data illuminate a poorly understood arm of a critical and evolutionarily conserved innate immune response. Furthermore, given the pleiotropic involvement of JNK in eukaryotic cell biology, we believe that many of the novel regulators identified in this screen are of interest beyond immune signaling

    Data-analysis strategies for image-based cell profiling

    Get PDF
    Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.Peer reviewe

    Salivary gland branching morphogenesis: a quantitative systems analysis of the Eda/Edar/NFÎșB paradigm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ectodysplasin-A appears to be a critical component of branching morphogenesis. Mutations in mouse <it>Eda </it>or human <it>EDA </it>are associated with absent or hypoplastic sweat glands, sebaceous glands, lacrimal glands, salivary glands (SMGs), mammary glands and/or nipples, and mucous glands of the bronchial, esophageal and colonic mucosa. In this study, we utilized <it>Eda</it><sup><it>Ta </it></sup>(Tabby) mutant mice to investigate how a marked reduction in functional Eda propagates with time through a defined genetic subcircuit and to test the proposition that canonical NFÎșB signaling is sufficient to account for the differential expression of developmentally regulated genes in the context of <it>Eda </it>polymorphism.</p> <p>Results</p> <p>The quantitative systems analyses do not support the stated hypothesis. For most NFÎșB-regulated genes, the observed time course of gene expression is nearly unchanged in Tabby (<it>Eda</it><sup><it>Ta</it></sup>) as compared to wildtype mice, as is NFÎșB itself. Importantly, a subset of genes is dramatically differentially expressed in Tabby (<it>Edar</it>, <it>Fgf8</it>, <it>Shh</it>, <it>Egf</it>, <it>Tgfa</it>, <it>Egfr</it>), strongly suggesting the existence of an alternative Eda-mediated transcriptional pathway pivotal for SMG ontogeny. Experimental and <it>in silico </it>investigations have identified C/EBPα as a promising candidate.</p> <p>Conclusion</p> <p>In Tabby SMGs, upregulation of the Egf/Tgfα/Egfr pathway appears to mitigate the potentially severe abnormal phenotype predicted by the downregulation of Fgf8 and Shh. Others have suggested that the buffering of the phenotypic outcome that is coincident with variant Eda signaling could be a common mechanism that permits viable and diverse phenotypes, normal and abnormal. Our results support this proposition. Further, if branching epithelia use variations of a canonical developmental program, our results are likely applicable to understanding the phenotypes of other branching organs affected by <it>Eda </it>(<it>EDA</it>) mutation.</p
    • 

    corecore