151 research outputs found

    Another possible way to determine the Neutrino Mass Hierarchy

    Full text link
    We show that by combining high precision measurements of the atmospheric delta m^2 in both the electron and muon neutrino (or anti-neutrino) disappearance channels one can determine the neutrino mass hierarchy. The required precision is a very challenging fraction of one per cent for both measurements. At even higher precision, sensitivity to the cosine of the CP violating phase is also possible. This method for determining the mass hierarchy of the neutrino sector does not depend on matter effects.Comment: 12 pages, 3 postscript figures, late

    Analytic Calculation of Neutrino Mass Eigenvalues

    Full text link
    Implicaion of the neutrino oscillation search for the neutrino mass square difference and mixing are discussed. We have considered the effective majorana mass m_{ee}, related for \beta\beta_{0\nu}decay. We find limits for neutrino mass eigen value m_{i} in the different neutrino mass spectrum,which explain the different neutrino data.Comment: 10 page

    SO(3) Gauge Symmetry and Nearly Tri-bimaximal Neutrino Mixing

    Full text link
    In this note I mainly focus on the neutrino physics part in my talk and report the most recent progress made in \cite{YLW0}. It is seen that the Majorana features of neutrinos and SO(3) gauge flavor symmetry can simultaneously explain the smallness of neutrino masses and nearly tri-bimaximal neutrino mixing when combining together with the mechanism of approximate global U(1) family symmetry. The mixing angle θ13\theta_{13} and CP-violating phase are in general nonzero and testable experimentally at the allowed sensitivity. The model also predicts the existence of vector-like Majorana neutrinos and charged leptons as well as new Higgs bosons, some of them can be light and explored at the LHC and ILC.Comment: 8 pages, invited talk, contribute to the Proceedings of the 4th International Conference on Flavor Physics (ICFP2007

    Search for a Lorentz invariance violation contribution in atmospheric neutrino oscillations using MACRO data

    Full text link
    Neutrino-induced upward-going muons in MACRO have been analysed in terms of relativity principles violating effects, keeping standard mass-induced atmospheric neutrino oscillations as the dominant source of nu_mu -> nu_tau transitions. The data disfavor these exotic possibilities even at a sub-dominant level, and stringent 90% C.L. limits are placed on the Lorentz invariance violation parameter |Delta v| < 6 * 10^(-24) at sin2theta_v = 0 and |Delta v| < 2.5--5 * 10^(-26) at sin2theta_v = +/-1. These limits can also be re-interpreted as upper bounds on the parameters describing violation of the Equivalence Principle.Comment: 8 pages, 2 figures, submitted to Physics Letters

    Solutions to large B and L breaking in the Randall-Sundrum model

    Get PDF
    The stability of proton and neutrino masses are discussed in the Randall-Sundrum model. We show that relevant operators should be suppressed, if the hierarchical Yukawa matrices are explained only by configurations of wavefunctions for fermions and the Higgs field along the extra dimension. We assume a ZNZ_N discrete gauge symmetry to suppress those operators. In the Dirac neutrino case, there is an infinite number of symmetries which may forbid the dangerous operators. In the Majorana neutrino case, the discrete gauge symmetries should originate from U(1)XU(1)_X gauge symmetries which are broken on the Planck brane. We also comment on the nnˉn-\bar{n} oscillation as a phenomenon which can distinguish those discrete gauge symmetries.Comment: 12 pages, No figures, Added reference

    Self-shielding effect of a single phase liquid xenon detector for direct dark matter search

    Full text link
    Liquid xenon is a suitable material for a dark matter search. For future large scale experiments, single phase detectors are attractive due to their simple configuration and scalability. However, in order to reduce backgrounds, they need to fully rely on liquid xenon's self-shielding property. A prototype detector was developed at Kamioka Observatory to establish vertex and energy reconstruction methods and to demonstrate the self-shielding power against gamma rays from outside of the detector. Sufficient self-shielding power for future experiments was obtained.Comment: 8 pages, 8 figure

    Search for Radiative Decays of Cosmic Background Neutrino using Cosmic Infrared Background Energy Spectrum

    Full text link
    We propose to search for the neutrino radiative decay by fitting a photon energy spectrum of the cosmic infrared background to a sum of the photon energy spectrum from the neutrino radiative decay and a continuum. By comparing the present cosmic infrared background energy spectrum observed by AKARI and Spitzer to the photon energy spectrum expected from neutrino radiative decay with a maximum likelihood method, we obatined a lifetime lower limit of 3.1×10123.1 \times 10^{12} to 3.8×10123.8 \times 10^{12} years at 95% confidence level for the third generation neutrino ν3\nu_3 in the ν3\nu_3 mass range between 50 \mmev and 150 \mmev under the present constraints by the neutrino oscillation measurements. In the left-right symmetric model, the minimum lifetime of ν3\nu_3 is predicted to be 1.5×10171.5 \times 10^{17} years for m3m_3 of 50 \mmev. We studied the feasibility of the observation of the neutrino radiative decay with a lifetime of 1.5×10171.5 \times 10^{17} years, by measuring a continuous energy spectrum of the cosmic infrared background

    The See-Saw Mechanism, Neutrino Yukawa Couplings, LFV Decays l_i to l_j + gamma and Leptogenesis

    Full text link
    The LFV charged lepton decays mu to e + gamma, tau to e + gamma and tau to mu + gamma and thermal leptogenesis are analysed in the MSSM with see-saw mechanism of neutrino mass generation and soft SUSY breaking with universal boundary conditions. The case of hierarchical heavy Majorana neutrino mass spectrum, M_1 10^9 GeV. Considering the natural range of values of the heaviest right-handed Majorana neutrino mass, M_3 > 5*10^{13} GeV, and assuming that the soft SUSY breaking universal gaugino and/or scalar masses have values in the range of few 100 GeV, we derive the combined constraints, which the existing stringent upper limit on the mu to e + gamma decay rate and the requirement of successful thermal leptogenesis impose on the neutrino Yukawa couplings, heavy Majorana neutrino masses and SUSY parameters. Results for the three possible types of light neutrino mass spectrum -- normal and inverted hierarchical and quasi-degenerate -- are obtained.Comment: 25 pages, 9 figures; typos corrected, few clarifying comments and one figure added; version submitted for publicatio

    Determination of the atmospheric neutrino fluxes from experimental data

    Get PDF
    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations. In this contribution we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates.Comment: 4 pages, 3 figs, to appear in the proceedings of the Multi-Messenger Approach to High-Energy Gamma-Ray Sources Conference, Barcelona July 200

    Neutrino-electron scattering in noncommutative space

    Full text link
    Neutral particles can couple with the U(1)U(1) gauge field in the adjoint representation at the tree level if the space-time coordinates are noncommutative (NC). Considering neutrino-photon coupling in the NC QED framework, we obtain the differential cross section of neutrino-electron scattering. Similar to the magnetic moment effect, one of the NC terms is proportional to 1T\frac 1 T, where TT is the electron recoil energy. Therefore, this scattering provides a chance to achieve a stringent bound on the NC scale in low energy by improving the sensitivity to the smaller electron recoil energy.Comment: 12 pages, 2 figure
    corecore