107 research outputs found
Myocyte-Specific Overexpressing HDAC4 Promotes Myocardial Ischemia/Reperfusion Injury
Background: Histone deacetylases (HDACs) play a critical role in modulating myocardial protection and cardiomyocyte survivals. However, Specific HDAC isoforms in mediating myocardial ischemia/reperfusion injury remain currently unknown. We used cardiomyocyte-specific overexpression of active HDAC4 to determine the functional role of activated HDAC4 in regulating myocardial ischemia and reperfusion in isovolumetric perfused hearts. Methods: In this study, we created myocyte-specific active HDAC4 transgenic mice to examine the functional role of active HDAC4 in mediating myocardial I/R injury. Ventricular function was determined in the isovolumetric heart, and infarct size was determined using tetrazolium chloride staining. Results: Myocyte-specific overexpressing activated HDAC4 in mice promoted myocardial I/R injury, as indicated by the increases in infarct size and reduction of ventricular functional recovery following I/R injury. Notably, active HDAC4 overexpression led to an increase in LC-3 and active caspase 3 and decrease in SOD-1 in myocardium. Delivery of chemical HDAC inhibitor attenuated the detrimental effects of active HDAC4 on I/R injury, revealing the pivotal role of active HDAC4 in response to myocardial I/R injury. Conclusions: Taken together, these findings are the first to define that activated HDAC4 as a crucial regulator for myocardial ischemia and reperfusion injury
Genome maps across 26 human populations reveal population-specific patterns of structural variation.
Large structural variants (SVs) in the human genome are difficult to detect and study by conventional sequencing technologies. With long-range genome analysis platforms, such as optical mapping, one can identify large SVs (>2 kb) across the genome in one experiment. Analyzing optical genome maps of 154 individuals from the 26 populations sequenced in the 1000 Genomes Project, we find that phylogenetic population patterns of large SVs are similar to those of single nucleotide variations in 86% of the human genome, while ~2% of the genome has high structural complexity. We are able to characterize SVs in many intractable regions of the genome, including segmental duplications and subtelomeric, pericentromeric, and acrocentric areas. In addition, we discover ~60 Mb of non-redundant genome content missing in the reference genome sequence assembly. Our results highlight the need for a comprehensive set of alternate haplotypes from different populations to represent SV patterns in the genome
Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration
Precise spatial and temporal regulation of cell adhesion and de-adhesion is critical for dynamic lymphocyte migration. Although a great deal of information has been learned about integrin lymphocyte function–associated antigen (LFA)-1 adhesion, the mechanism that regulates efficient LFA-1 de-adhesion from intercellular adhesion molecule (ICAM)-1 during T lymphocyte migration is unknown. Here, we show that nonmuscle myosin heavy chain IIA (MyH9) is recruited to LFA-1 at the uropod of migrating T lymphocytes, and inhibition of the association of MyH9 with LFA-1 results in extreme uropod elongation, defective tail detachment, and decreased lymphocyte migration on ICAM-1, without affecting LFA-1 activation by chemokine CXCL-12. This defect was reversed by a small molecule antagonist that inhibits both LFA-1 affinity and avidity regulation, but not by an antagonist that inhibits only affinity regulation. Total internal reflection fluorescence microscopy of the contact zone between migrating T lymphocytes and ICAM-1 substrate revealed that inactive LFA-1 is selectively localized to the posterior of polarized T lymphocytes, whereas active LFA-1 is localized to their anterior. Thus, during T lymphocyte migration, uropodal adhesion depends on LFA-1 avidity, where MyH9 serves as a key mechanical link between LFA-1 and the cytoskeleton that is critical for LFA-1 de-adhesion
SENP1 regulates IFN-γ−STAT1 signaling through STAT3−SOCS3 negative feedback loop
Interferon-γ (IFN-γ) triggers macrophage for inflammation response by activating the intracellular JAK−STAT1 signaling. Suppressor of cytokine signaling 1 (SOCS1) and protein tyrosine phosphatases can negatively modulate IFN-γ signaling. Here, we identify a novel negative feedback loop mediated by STAT3−SOCS3, which is tightly controlled by SENP1 via de-SUMOylation of protein tyrosine phosphatase 1B (PTP1B), in IFN-γ signaling. SENP1-deficient macrophages show defects in IFN-γ signaling and M1 macrophage activation. PTP1B in SENP1-deficient macrophages is highly SUMOylated, which reduces PTP1B-induced de-phosphorylation of STAT3. Activated STAT3 then suppresses STAT1 activation via SOCS3 induction in SENP1-deficient macrophages. Accordingly, SENP1-deficient macrophages show reduced ability to resist Listeria monocytogenes infection. These results reveal a crucial role of SENP1-controlled STAT1 and STAT3 balance in macrophage polarization
Role of influenza A virus NP acetylation on viral growth and replication
Lysine acetylation is a post-translational modification known to regulate protein functions. Here we identify several acetylation sites of the influenza A virus nucleoprotein (NP), including the lysine residues K77, K113 and K229. Viral growth of mutant virus encoding K229R, mimicking a non-acetylated NP lysine residue, is severely impaired compared to wildtype or the mutant viruses encoding K77R or K113R. This attenuation is not the result of decreased polymerase activity, altered protein expression or disordered vRNP co-segregation but rather caused by impaired particle release. Interestingly, release deficiency is also observed mimicking constant acetylation at this site (K229Q), whereas virus encoding NP-K113Q could not be generated. However, mimicking NP hyper-acetylation at K77 and K229 severely diminishes viral polymerase activity, while mimicking NP hypo-acetylation at these sites has no effect on viral replication. These results suggest that NP acetylation at K77, K113 and K229 impacts multiple steps in viral replication of influenza A viruses
Differential Spatial Gene and Protein Expression Associated with Recurrence Following Chemoradiation for Localized Anal Squamous Cell Cancer
The identification of transcriptomic and protein biomarkers prognosticating recurrence risk after chemoradiation of localized squamous cell carcinoma of the anus (SCCA) has been limited by a lack of available fresh tissue at initial presentation. We analyzed archival FFPE SCCA specimens from pretreatment biopsies prior to chemoradiation for protein and RNA biomarkers from patients with localized SCCA who recurred (N = 23) and who did not recur (N = 25). Tumor cells and the tumor microenvironment (TME) were analyzed separately to identify biomarkers with significantly different expression between the recurrent and non-recurrent groups. Recurrent patients had higher mean protein expression of FoxP3, MAPK-activation markers (BRAF, p38-MAPK) and PI3K/Akt activation (phospho-Akt) within the tumor regions. The TME was characterized by the higher protein expression of immune checkpoint biomarkers such as PD-1, OX40L and LAG3. For patients with recurrent SCCA, the higher mean protein expression of fibronectin was observed in the tumor and TME compartments. No significant differences in RNA expression were observed. The higher baseline expression of immune checkpoint biomarkers, together with markers of MAPK and PI3K/Akt signaling, are associated with recurrence following chemoradiation for patients with localized SCCA. These data provide a rationale towards the application of immune-based therapeutic strategies to improve curative-intent outcomes beyond conventional therapies for patients with SCCA
Anti-KIF20B autoantibodies are associated with cranial neuropathy in systemic lupus erythematosus
Background: Cranial neuropathies (CN) are a rare neuropsychiatric SLE (NPSLE) manifestation. Previous studies reported that antibodies to the kinesin family member 20B (KIF20B) (anti-KIF20B) protein were associated with idiopathic ataxia and CN. We assessed anti-KIF20B as a potential biomarker for NPSLE in an international SLE inception cohort. Methods: Individuals fulfilling the revised 1997 American College of Rheumatology (ACR) SLE classification criteria were enrolled from 31 centres from 1999 to 2011 and followed annually in the Systemic Lupus Erythematosus International Collaborating Clinics inception cohort. Anti-KIF20B testing was performed on baseline (within 15 months of diagnosis or first annual visit) samples using an addressable laser bead immunoassay. Logistic regression (penalised maximum likelihood and adjusting for confounding variables) examined the association between anti-KIF20B and NPSLE manifestations (1999 ACR case definitions), including CN, occurring over the first 5 years of follow-up. Results: Of the 1827 enrolled cohort members, baseline serum and 5 years of follow-up data were available on 795 patients who were included in this study: 29.8% were anti-KIF20B-positive, 88.7% female, and 52.1% White. The frequency of anti-KIF20B positivity differed only for those with CN (n=10) versus without CN (n=785) (70.0% vs 29.3%; OR 5.2, 95% CI 1.4, 18.5). Compared with patients without CN, patients with CN were more likely to fulfil the ACR haematological (90.0% vs 66.1%; difference 23.9%, 95% CI 5.0%, 42.8%) and ANA (100% vs 95.7%; difference 4.3%, 95% CI 2.9%, 5.8%) criteria. In the multivariate analysis adjusting for age at baseline, female, White race and ethnicity, and ACR haematological and ANA criteria, anti-KIF20B positivity remained associated with CN (OR 5.2, 95% CI 1.4, 19.1). Conclusion: Anti-KIF20B is a potential biomarker for SLE-related CN. Further studies are needed to examine how autoantibodies against KIF20B, which is variably expressed in a variety of neurological cells, contribute to disease pathogenesis
Angiopoietin-1 promotes functional neovascularization that relieves ischemia by improving regional reperfusion in a swine chronic myocardial ischemia model
10.1007/s11373-006-9082-xJournal of Biomedical Science134579-59
- …