1,044 research outputs found

    Anterior Ocular Biometrics as Measured by Ultrasound Biomicroscopy

    Get PDF
    Background: High frequency ultrasonography (ultrasound biomicroscopy; UBM) is an ophthalmic diagnostic tool that can be used to measure the depth of the anterior segment (ASD), the anterior chamber angle (ACA), as well as thicknesses of the iris and the ciliary body (CB). Methods: The anterior segment dimensions and thicknesses were measured by Sonomed 35-MHz. Results: Measurements for 95 eyes from 52 adults were analyzed. The mean and median ASD and ACA were 2.91, 2.92 ± 0.41 mm and 34.1, 34.3 ± 12.1 degrees, respectively. The angle superiorly was wider than inferiorly (p = 0.04). At the root of the iris, the mid of the iris, and the juxtapupillary edge of the iris, the iris thicknesses (median, mean) were 0.40, 0.41 ± 0.1, 0.50, 0.51 ± 0.1, and 0.70, 0.71 ± 0.1 mm, respectively. The thicknesses of CB and CB together with the ciliary processes (median, mean), were 0.70, 0.71 ± 0.15 mm and 1.36, 1.41 ± 0.15 mm, respectively. The upper quadrant of both the iris and the CB was significantly thicker than the lower quadrant (p = 0.04). Conclusions: Our biometric measurements for the anterior segment can be used as normative data for anterior segment depth and angle and iris and ciliary body thickness in normal eyes

    Reticular synthesis and the design of new materials

    Full text link
    The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62718/1/nature01650.pd

    A route to high surface area, porosity and inclusion of large molecules in crystals

    Full text link
    One of the outstanding challenges in the field of porous materials is the design and synthesis of chemical structures with exceptionally high surface areas(1). Such materials are of critical importance to many applications involving catalysis, separation and gas storage. The claim for the highest surface area of a disordered structure is for carbon, at 2,030 m(2) g(-1) (ref. 2). Until recently, the largest surface area of an ordered structure was that of zeolite Y, recorded at 904 m(2) g(-1) (ref. 3). But with the introduction of metal-organic framework materials, this has been exceeded, with values up to 3,000 m(2) g(-1) (refs 4-7). Despite this, no method of determining the upper limit in surface area for a material has yet been found. Here we present a general strategy that has allowed us to realize a structure having by far the highest surface area reported to date. We report the design, synthesis and properties of crystalline Zn4O(1,3,5-benzenetribenzoate)(2), a new metal-organic framework with a surface area estimated at 4,500 m(2) g(-1). This framework, which we name MOF-177, combines this exceptional level of surface area with an ordered structure that has extra-large pores capable of binding polycyclic organic guest molecules-attributes not previously combined in one material.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62609/1/nature02311.pd

    Residual stress measurement round robin on an electron beam welded joint between austenitic stainless steel 316L(N) and ferritic steel P91

    Get PDF
    This paper is a research output of DMW-Creep project which is part of a national UK programme through the RCUK Energy programme and India's Department of Atomic Energy. The research is focussed on understanding the characteristics of welded joints between austenitic stainless steel and ferritic steel that are widely used in many nuclear power generating plants and petrochemical industries as well as conventional coal and gas-fired power systems. The members of the DMW-Creep project have under- taken parallel round robin activities measuring the residual stresses generated by a dissimilar metal weld (DMW) between AISI 316L(N) austenitic stainless steel and P91 ferritic-martensitic steel. Electron beam (EB) welding was employed to produce a single bead weld on a plate specimen and an additional smoothing pass (known cosmetic pass) was then introduced using a defocused beam. The welding re- sidual stresses have been measured by five experimental methods including (I) neutron diffraction (ND), (II) X-Ray diffraction (XRD), (III) contour method (CM), (IV) incremental deep hole drilling (iDHD) and (V) incremental centre hole drilling (iCHD). The round robin measurements of weld residual stresses are compared in order to characterise surface and sub-surface residual stresses comprehensively

    Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding

    Full text link
    Within the broad class of multiferroics (compounds showing a coexistence of magnetism and ferroelectricity), we focus on the subclass of "improper electronic ferroelectrics", i.e. correlated materials where electronic degrees of freedom (such as spin, charge or orbital) drive ferroelectricity. In particular, in spin-induced ferroelectrics, there is not only a {\em coexistence} of the two intriguing magnetic and dipolar orders; rather, there is such an intimate link that one drives the other, suggesting a giant magnetoelectric coupling. Via first-principles approaches based on density functional theory, we review the microscopic mechanisms at the basis of multiferroicity in several compounds, ranging from transition metal oxides to organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic frameworks, MOFs)Comment: 22 pages, 9 figure

    Mapping of Functional Groups in Metal-Organic Frameworks

    Get PDF
    We determined the heterogeneous mesoscale spatial apportionment of functional groups in a series of multivariate metal-organic frameworks (MTV-MOF-5) containing BDC (1,4-benzenedicarboxylate) linkers with different functional groups - B (BDC-NH2), E (BDC-NO2), F [(BDC-(CH3)2], H [BDC-(OC3H5) 2], and I [BDC-(OC7H7)2] - using solid-state nuclear magnetic resonance measurements combined with molecular simulations. Our analysis reveals that these methods discern between random (EF), alternating (EI and EHI), and various cluster (BF) forms of functional group apportionments. This combined synthetic, characterization, and computational approach predicts the adsorptive properties of crystalline MTV-MOF systems. This methodology, developed in the context of ordered frameworks, is a first step in resolving the more general problem of spatial disorder in other ordered materials, including mesoporous materials, functionalized polymers, and defect distributions within crystalline solids

    Methane adsorption in metal-organic frameworks containing nanographene linkers: a computational study

    Get PDF
    Metal-organic framework (MOF) materials are known to be amenable to expansion through elongation of the parent organic linker. For a family of model (3,24)-connected MOFs with the rht topology, in which the central part of organic linker comprises a hexabenzocoronene unit, the effect of the linker type and length on their structural and gas adsorption properties is studied computationally. The obtained results compare favourably with known MOF materials of similar structure and topology. We find that the presence of a flat nanographene-like central core increases the geometric surface area of the frameworks, sustains additional benzene rings, promotes linker elongation and the efficient occupation of the void space by guest molecules. This provides a viable linker modification method with potential for enhancement of uptake for methane and other gas molecules

    Bilateral transfer of motor performance as a function of motor imagery training: a systematic review and meta-analysis

    Get PDF
    ObjectiveThe objective of this review was to evaluate the efficacy of mental imagery training (MIT) in promoting bilateral transfer (BT) of motor performance for healthy subjects.Data sourcesWe searched 6 online-databases (Jul-Dec 2022) using terms: “mental practice,” “motor imagery training,” “motor imagery practice,” “mental training,” “movement imagery,” “cognitive training,” “bilateral transfer,” “interlimb transfer,” “cross education,” “motor learning,” “strength,” “force” and “motor performance.”Study selection and data extractionWe selected randomized-controlled studies that examined the effect of MIT on BT. Two reviewers independently determined if each study met the inclusion criteria for the review. Disagreements were resolved through discussion and, if necessary, by a third reviewer. A total of 9 articles out of 728 initially identified studies were chosen for the meta-analysis.Data synthesisThe meta-analysis included 14 studies for the comparison between MIT and no-exercise control (CTR) and 15 studies for the comparison between MIT and physical training (PT).ResultsMIT showed significant benefit in inducing BT compared to CTR (ES = 0.78, 95% CI = 0.57–0.98). The effect of MIT on BT was similar to that of PT (ES = –0.02, 95% CI = –0.15–0.17). Subgroup analyses showed that internal MIT (IMIT) was more effective (ES = 2.17, 95% CI = 1.57–2.76) than external MIT (EMIT) (ES = 0.95, 95% CI = 0.74–1.17), and mixed-task (ES = 1.68, 95% CI = 1.26–2.11) was more effective than mirror-task (ES = 0.46, 95% CI = 0.14–0.78) and normal-task (ES = 0.56, 95% CI = 0.23–0.90). No significant difference was found between transfer from dominant limb (DL) to non-dominant limb (NDL) (ES = 0.67, 95% CI = 0.37–0.97) and NDL to DL (ES = 0.87, 95% CI = 0.59–1.15).ConclusionThis review concludes that MIT can serve as a valuable alternative or supplement to PT in facilitating BT effects. Notably, IMIT is preferable to EMIT, and interventions incorporating tasks that have access to both intrinsic and extrinsic coordinates (mixed-task) are preferred over those that involve only one of the two coordinates (mirror-task or normal-task). These findings have implications for rehabilitation of patients such as stroke survivors

    A new method to position and functionalize metal-organic framework crystals

    Get PDF
    With controlled nanometre-sized pores and surface areas of thousands of square metres per gram, metal-organic frameworks (MOFs) may have an integral role in future catalysis, filtration and sensing applications. In general, for MOF-based device fabrication, well-organized or patterned MOF growth is required, and thus conventional synthetic routes are not suitable. Moreover, to expand their applicability, the introduction of additional functionality into MOFs is desirable. Here, we explore the use of nanostructured poly-hydrate zinc phosphate (α-hopeite) microparticles as nucleation seeds for MOFs that simultaneously address all these issues. Affording spatial control of nucleation and significantly accelerating MOF growth, these α-hopeite microparticles are found to act as nucleation agents both in solution and on solid surfaces. In addition, the introduction of functional nanoparticles (metallic, semiconducting, polymeric) into these nucleating seeds translates directly to the fabrication of functional MOFs suitable for molecular size-selective applications
    • …
    corecore