14,703 research outputs found

    Interpretation of the characteristics of ocean-dumped sewage sludge related to remote sensing

    Get PDF
    Wastewater sludge characteristics in general, and characteristics of wastewater sludges generated by the City of Philadelphia in particular, were addressed. The types and sources of wastewater sludges, a description of sludge treatment and disposal processes, examination of sludge generation and management for the City of Philadelphia, and definition of characteristics for typical east coast sludges undergoing ocean disposal were discussed. Specific differences exist between the characteristics of primary and secondary wastewater sludges, especially with the nature and size distribution of the solids particles. The sludges from the City of Philadelphia monitored during remote sensing experiments were mixtures of various sludge types and lacked distinguishing characteristics. In particular, the anaerobic digestion process exerted the most significant influence on sludge characteristics for the City of Philadelphia. The sludges generated by the City of Philadelphia were found to be typical and harbor no unique features

    Experimental and theoretical study of artificial plasma layers produced by two intersecting beams in a chamber

    Get PDF
    The work done on the Bragg scattering of electromagnetic waves by microwave produced plasma layers is reported. Also summarized is the work accomplished on the propagation of high power microwave pulses in an air breakdown environment. Ongoing work on the theoretical model and numerical results of pulse propagation in air is also presented as are the results of studying the decay of plasma density and temperature

    Stem-root flow effect on soil–atmosphere interactions and uncertainty assessments

    Get PDF
    Abstract. Soil water can rapidly enter deeper layers via vertical redistribution of soil water through the stem–root flow mechanism. This study develops the stem–root flow parameterization scheme and coupled this scheme with the Simplified Simple Biosphere model (SSiB) to analyze its effects on land–atmospheric interactions. The SSiB model was tested in a single column mode using the Lien Hua Chih (LHC) measurements conducted in Taiwan and HAPEX-Mobilhy (HAPEX) measurements in France. The results show that stem–root flow generally caused a decrease in the moisture content at the top soil layer and moistened the deeper soil layers. Such soil moisture redistribution results in significant changes in heat flux exchange between land and atmosphere. In the humid environment at LHC, the stem–root flow effect on transpiration was minimal, and the main influence on energy flux was through reduced soil evaporation that led to higher soil temperature and greater sensible heat flux. In the Mediterranean environment of HAPEX, the stem–root flow significantly affected plant transpiration and soil evaporation, as well as associated changes in canopy and soil temperatures. However, the effect on transpiration could either be positive or negative depending on the relative changes in the moisture content of the top soil vs. deeper soil layers due to stem–root flow and soil moisture diffusion processes

    Experiment and theoretical study of the propagation of high power microwave pulse in air breakdown environment

    Get PDF
    In the study of the propagation of high power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. In the very high power region, one has to prevent the cutoff reflection caused by the excessive ionization in the background air. A frequency auto-conversion process which can lead to reflectionless propagation of powerful EM pulses in self-generated plasmas is studied. The theory shows that under the proper conditions the carrier frequency, omega, of the pulse will indeed shift upward with the growth of plasma frequency, omega(sub pe). Thus, the plasma during breakdown will always remain transparent to the pulse (i.e., omega greater than omega(sub pe)). A chamber experiment to demonstrate the frequency auto-conversion during the pulse propagation through the self-generated plasma is then conducted in a chamber. The detected frequency shift is compared with the theoretical result calculated y using the measured electron density distribution along the propagation path of the pulse. Good agreement between the theory and the experiment results is obtained

    Combustion: Structural interaction in a viscoelastic material

    Get PDF
    The effect of interaction between combustion processes and structural deformation of solid propellant was considered. The combustion analysis was performed on the basis of deformed crack geometry, which was determined from the structural analysis. On the other hand, input data for the structural analysis, such as pressure distribution along the crack boundary and ablation velocity of the crack, were determined from the combustion analysis. The interaction analysis was conducted by combining two computer codes, a combustion analysis code and a general purpose finite element structural analysis code

    A water quality modeling study of Lynnhaven Bay, Virginia

    Get PDF
    The City of Virginia Beach has proposed channel dredging in the Eastern Branch of the Lynnhaven Bay for the purposes of recreations and drainage improvement. It is therefore necessary to examine the possible environmental results of such a project. This environmental assessment is complicated by another proposal to modify the Lynnhaven system. The U.S. Army Corps of Engineers has proposed adding a second canal leading to the Eastern Branch, in order to reduce flood damage. This canal project would affect the Lynnhaven system by increasing nonpoint sources of pollution and by increasing the tidal prism. The water quality consequences of the canal project have been studied (Kuo & Hyer, 1979). The proposed channel dredging project must be studied not only by itself but in combination with the canal project proposed by the Corps of Engineers. In this study, the water quality model previously calibrated and validated for the Corps of Engineers is used to estimate the effects of the channel dredging in the Eastern Branch of the Lynnhaven

    Constraint Handling in Genotype to Phenotype Mapping and Genetic Operators for Project Staffing

    Get PDF
    Project staffing in many organisations involves the assignment of people to multiple projects while satisfying multiple constraints. The use of a genetic algorithm with constraint handling performed during a genotype to phenotype mapping process provides a new approach. Experiments show promise for this technique

    Temperature evolution of magnetic structure of HoFeO3_3 by single crystal neutron diffraction

    Get PDF
    We have investigated the temperature evolution of the magnetic structures of HoFeO3_3 by single crystal neutron diffraction. The three different magnetic structures found as a function of temperature for \hfo\ are described by the magnetic groups Pb′'n′21'2_1, Pbn212_1 and Pbn′21′'2_1' and are stable in the temperature ranges ≈\approx 600-55~K, 55-37~K and 35>T>2>T>2~K respectively. In all three the fundamental coupling between the Fe sub-lattices remains the same and only their orientation and the degree of canting away from the ideal axial direction varies. The magnetic polarisation of the Ho sub-lattices in these two higher temperature regions, in which the major components of the Fe moment lie along xx and yy, is very small. The canting of the moments from the axial directions is attributed to the antisymmetric interactions allowed by the crystal symmetry. They include contributions from single ion anisotropy as well as the Dzyaloshinski antisymmetric exchange. In the low temperature phase two further structural transitions are apparent in which the spontaneous magnetisation changes sign with respect to the underlying antiferromagnetic configuration. In this temperature range the antisymmetric exchange energy varies rapidly as the the Ho sub-lattices begin to order. So long as the ordered Ho moments are small the antisymmetric exchange is due only to Fe-Fe interactions, but as the degree of Ho order increases the Fe-Ho interactions take over whilst at the lowest temperatures, when the Ho moments approach saturation the Ho-Ho interactions dominate. The reversals of the spontaneous magnetisation found in this study suggest that in \hfo\ the sums of the Fe-Fe and Ho-Ho antisymmetric interactions have the same sign as one another, but that of the Ho-Fe terms is opposite

    A Simple Model for Cavity Enhanced Slow Lights in Vertical Cavity Surface Emission Lasers

    Full text link
    We develop a simple model for the slow lights in Vertical Cavity Surface Emission Lasers (VCSELs), with the combination of cavity and population pulsation effects. The dependences of probe signal power, injection bias current and wavelength detuning for the group delays are demonstrated numerically and experimentally. Up to 65 ps group delays and up to 10 GHz modulation frequency can be achieved in the room temperature at the wavelength of 1.3 μ\mum. The most significant feature of our VCSEL device is that the length of active region is only several μ\mum long. Based on the experimental parameters of quantum dot VCSEL structures, we show that the resonance effect of laser cavity plays a significant role to enhance the group delays
    • …
    corecore