16,438 research outputs found

    Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al

    Get PDF
    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g−1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research

    Crystal structure of Zen4 in the apo state reveals a missing conformation of kinesin

    Full text link
    © 2017 The Author(s). Kinesins hydrolyse ATP to transport intracellular cargoes along microtubules. Kinesin neck linker (NL) functions as the central mechano-chemical coupling element by changing its conformation through the ATPase cycle. Here we report the crystal structure of kinesin-6 Zen4 in a nucleotide-free, apo state, with the NL initial segment (NIS) adopting a backward-docked conformation and the preceding α6 helix partially melted. Single-molecule fluorescence resonance energy transfer (smFRET) analyses indicate the NIS of kinesin-1 undergoes similar conformational changes under tension in the two-head bound (2HB) state, whereas it is largely disordered without tension. The backward-docked structure of NIS is essential for motility of the motor. Our findings reveal a key missing conformation of kinesins, which provides the structural basis of the stable 2HB state and offers a tension-based rationale for an optimal NL length to ensure processivity of the motor

    Harnessing Surface-Functionalized Metal-Organic Frameworks for Selective Tumor Cell Capture

    Get PDF
    A platform based on a metal-organic framework (MOF) bearing free carboxylic acid groups has been developed for tumor cell capture and potential drug screening applications. A zinc-based MOF expressing uncoordinated carboxylic acids (ZnMOF-COOH) was grown on a ZnO substrate. Post-synthetic modification (PSM) of the acid groups gave a composite material that expressed peptide linkages and allowed the immobilization of anti-epithelial cell adhesion molecule (anti-EpCAM) antibody. This strategy offers a universal method for the controllable immobilization of antibodies and even enzymes on the surface of a MOF. The resulting immunotrapper exhibited excellent capture ability, demonstrating high efficiency and selectivity towards EpCAM-positive tumor cells. The promotion of tumor cell adhesion is attributed to the 3-dimentional (3D) structure of the composite, which revealed spine-like microstructures.This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21527809 and 21575007), the China Scholarship Council and the UK EPSRC (EP/J500380/1)

    Acclimation of methane emissions from rice paddy fields to straw addition

    Get PDF
    This is the final version. Available on open access from AAAS via the DOI in this recordData and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.Straw incorporation is a common long-term practice to improve soil fertility in croplands worldwide. However, straw amendments often increase methane (CH4) emissions from rice paddies, one of the main sources of anthropogenic CH4. Intergovernmental Panel on Climate Change (IPCC) methodologies to estimate CH4 emissions from rice agriculture assume that the effect of straw addition remains constant over time. Here, we show through a series of experiments and meta-analysis that these CH4 emissions acclimate. Effects of long-term (>5 years) straw application on CH4 emissions were, on average, 48% lower than IPCC estimates. Long-term straw incorporation increased soil methanotrophic abundance and rice root size, suggesting an increase in CH4 oxidation rates through improved O2 transport into the rhizosphere. Our results suggest that recent model projections may have overestimated CH4 emissions from rice agriculture and that CH4 emission estimates can be improved by considering the duration of straw incorporation and other management practices.National Key Research and Development Program of ChinaSpecial Fund for Agro-scientific Research in the Public InterestChina Agriculture Research System–Green ManureCentral Public-interest Scientific Institution Basal Research Fund of Institute of Crop ScienceInnovation Program of CAASGEF Project of Climate Smart Staple Crop Production in Chin

    The effect of China's Clean Air Act on cognitive function in older adults: a population-based, quasi-experimental study

    Get PDF
    Background: Air pollution might accelerate cognitive ageing; it is unclear whether large-scale interventions, such as China's Clean Air Act (CCAA), can mitigate cognitive deterioration. We aimed to evaluate the effect of CCAA on changes in cognitive function in older adults. / Methods: In this population-based, quasi-experimental study, we did a difference-in-differences analysis of the data collected during the 2014 and 2018 waves of the Chinese Longitudinal Healthy Longevity Survey (CLHLS). The study design used a counterfactual analysis feature by dividing CLHLS participants into two groups. The intervention group included participants who lived in areas where the provincial government set a target of reducing particulate matter (PM) by at least 5% annually from 2014 onward, whereas the control group consisted of individuals who lived in areas without a PM reduction target. Global cognitive function was measured using the Mini-Mental State Examination (MMSE). We used fixed-effects models to examine the between-group differences in MMSE score changes before and after CCAA implementation. We associated longitudinal changes in MMSE scores with changes in concentrations of PM with a diameter of less than 2·5 μm (PM2·5) concentration and other regulated pollutants. We used alternative models and sensitivity analyses to evaluate the robustness of the results from the main models. / Findings: 2812 individuals participated in the 2014 and 2018 surveys (mean age 81·0 years [SD 9·3] in 2014; 1408 [50·1%] female and 1404 [49·9%] male). 2251 (80·0%) were included in the intervention group and 561 (20·0%) in the control group. After controlling for potential confounders, the intervention group had a significantly smaller decline in MMSE scores from 2014 to 2018 compared with the control group: the mean between-group difference was 2·45 points (95% CI 1·32–3·57). Interquartile increases in PM2·5 were associated with a significant MMSE score decline of 0·83 points (95% CI 0·24–1·42); similarly, increases in SO2 were also associated with a significant MMSE score decline of 0·80 points (0·32–1·29). / Interpretation: Implementing stringent clean air policies might mitigate the risk of air pollutant-associated cognitive ageing in older people. / Funding: National Natural Sciences Foundation of China, National Key R&D Program of China, China Postdoctoral Science Foundation funded project, the Duke/Duke-National University of Singapore Collaboration Pilot Project, the National Institute on Aging and Peking University-Baidu Fund, Energy Foundation, and the Fundamental Research Funds for the Central Universities

    Probing Shadowed Nuclear Sea with Massive Gauge Bosons in the Future Heavy-Ion Collisions

    Get PDF
    The production of the massive bosons Z0Z^0 and W±W^{\pm} could provide an excellent tool to study cold nuclear matter effects and the modifications of nuclear parton distribution functions (nPDFs) relative to parton distribution functions (PDFs) of a free proton in high energy nuclear reactions at the LHC as well as in heavy-ion collisions (HIC) with much higher center-of mass energies available in the future colliders. In this paper we calculate the rapidity and transverse momentum distributions of the vector boson and their nuclear modification factors in p+Pb collisions at sNN=63\sqrt{s_{NN}}=63TeV and in Pb+Pb collisions at sNN=39\sqrt{s_{NN}}=39TeV in the framework of perturbative QCD by utilizing three parametrization sets of nPDFs: EPS09, DSSZ and nCTEQ. It is found that in heavy-ion collisions at such high colliding energies, both the rapidity distribution and the transverse momentum spectrum of vector bosons are considerably suppressed in wide kinematic regions with respect to p+p reactions due to large nuclear shadowing effect. We demonstrate that in the massive vector boson productions processes with sea quarks in the initial-state may give more contributions than those with valence quarks in the initial-state, therefore in future heavy-ion collisions the isospin effect is less pronounced and the charge asymmetry of W boson will be reduced significantly as compared to that at the LHC. Large difference between results with nCTEQ and results with EPS09 and DSSZ is observed in nuclear modifications of both rapidity and pTp_T distributions of Z0Z^0 and WW in the future HIC.Comment: 13 pages, 21 figures, version accepted for publication in Eur. Phys. J.

    Higher yields and lower methane emissions with new rice cultivars

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Breeding high-yielding rice cultivars through increasing biomass is a key strategy to meet rising global food demands. Yet, increasing rice growth can stimulate methane (CH4 ) emissions, exacerbating global climate change, as rice cultivation is a major source of this powerful greenhouse gas. Here, we show in a series of experiments that high-yielding rice cultivars actually reduce CH4 emissions from typical paddy soils. Averaged across 33 rice cultivars, a biomass increase of 10% resulted in a 10.3% decrease in CH4 emissions in a soil with a high carbon (C) content. Compared to a low-yielding cultivar, a high-yielding cultivar significantly increased root porosity and the abundance of methane-consuming microorganisms, suggesting that the larger and more porous root systems of high-yielding cultivars facilitated CH4 oxidation by promoting O2 transport to soils. Our results were further supported by a meta-analysis, showing that high-yielding rice cultivars strongly decrease CH4 emissions from paddy soils with high organic C contents. Based on our results, increasing rice biomass by 10% could reduce annual CH4 emissions from Chinese rice agriculture by 7.1%. Our findings suggest that modern rice breeding strategies for high-yielding cultivars can substantially mitigate paddy CH4 emission in China and other rice growing regions.This work was supported by the National Key Research and Development Program China (2016YFD0300903, 2016YFD0300501, and 2015BAC02B02), Special Fund for Agro-scientific Research in the Public Interest (201503122), Central Public interest Scientific Institution Basal Research Fund of Institute of Crop Science, the Innovation Program of CAAS (Y2016PT12, Y2016XT01), and the China Scholarship Council

    The Role of Solvent Composition and Polymorph Surface Chemistry in the Solution-Mediated Phase Transformation Process of Cefaclor

    Get PDF
    The solution-mediated phase transformation process from cefaclor dihydrate to an ethanol–water solvate is analyzed by optical microscopy, powder X-ray diffraction, scanning electron microscopy and molecular modeling. The solution concentration and polymorphic composition during slurry transformation, as monitored using UV and Raman spectroscopy, respectively, reveal that the dihydrate transforms to the ethanol–water solvate at a low ethanol concentration in the mixture solvent. The transformation process is controlled by the growth of ethanol–water solvate, which nucleates on the surfaces of the dihydrate crystals. Molecular simulation confirms the critical point of transformation between the dihydrate and the ethanol–water solvate, consistent with the experimental results. The results demonstrate the importance of the solvent composition and surface chemistry of dihydrate in promoting the heterogeneous nucleation of ethanol–water solvate and provide guidance for the process control for the target form of cefaclor required
    • …
    corecore