67,437 research outputs found

    Cocommutative Calabi-Yau Hopf algebras and deformations

    Get PDF
    The Calabi-Yau property of cocommutative Hopf algebras is discussed by using the homological integral, a recently introduced tool for studying infinite dimensional AS-Gorenstein Hopf algebras. It is shown that the skew-group algebra of a universal enveloping algebra of a finite dimensional Lie algebra \g with a finite subgroup GG of automorphisms of \g is Calabi-Yau if and only if the universal enveloping algebra itself is Calabi-Yau and GG is a subgroup of the special linear group SL(\g). The Noetherian cocommutative Calabi-Yau Hopf algebras of dimension not larger than 3 are described. The Calabi-Yau property of Sridharan enveloping algebras of finite dimensional Lie algebras is also discussed. We obtain some equivalent conditions for a Sridharan enveloping algebra to be Calabi-Yau, and then partly answer a question proposed by Berger. We list all the nonisomorphic 3-dimensional Calabi-Yau Sridharan enveloping algebras

    Stabilized Schemes for the Hydrostatic Stokes Equations

    Get PDF
    Some new stable finite element (FE) schemes are presented for the hydrostatic Stokes system or primitive equations of the ocean. It is known that the stability of the mixed formulation ap- proximation for primitive equations requires the well-known Ladyzhenskaya–Babuˇska–Brezzi condi- tion related to the Stokes problem and an extra inf-sup condition relating the pressure and the vertical velocity. The main goal of this paper is to avoid this extra condition by adding a residual stabilizing term to the vertical momentum equation. Then, the stability for Stokes-stable FE combinations is extended to the primitive equations and some error estimates are provided using Taylor–Hood P2 –P1 or miniele- ment (P1 +bubble)–P1 FE approximations, showing the optimal convergence rate in the P2 –P1 case. These results are also extended to the anisotropic (nonhydrostatic) problem. On the other hand, by adding another residual term to the continuity equation, a better approximation of the vertical derivative of pressure is obtained. In this case, stability and error estimates including this better approximation are deduced, where optimal convergence rate is deduced in the (P 1 +bubble)–P1 case. Finally, some numerical experiments are presented supporting previous results

    Calabi-Yau coalgebras

    Full text link
    We provide a construction of minimal injective resolutions of simple comodules of path coalgebras of quivers with relations. Dual to Calabi-Yau condition of algebras, we introduce the Calabi-Yau condition to coalgebras. Then we give some descriptions of Calabi-Yau coalgebras with lower global dimensions. An appendix is included for listing some properties of cohom functors

    Dualities of artinian coalgebras with applications to noetherian complete algebras

    Full text link
    A duality theorem of the bounded derived category of quasi-finite comodules over an artinian coalgebra is established. Let AA be a noetherian complete basic semiperfect algebra over an algebraically closed field, and CC be its dual coalgebra. If AA is Artin-Schelter regular, then the local cohomology of AA is isomorphic to a shift of twisted bimodule 1Cσ∗{}_1C_{\sigma^*} with σ\sigma a coalgebra automorphism. This yields that the balanced dualinzing complex of AA is a shift of the twisted bimodule σ∗A1{}_{\sigma^*}A_1. If σ\sigma is an inner automorphism, then AA is Calabi-Yau

    Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2

    Full text link
    The in-plane resistivity ρ\rho and thermal conductivity Îș\kappa of FeAs-based superconductor KFe2_2As2_2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior ρ(T)∌T1.5\rho(T) \sim T^{1.5} at Hc2H_{c_2} = 5 T, and the development of a Fermi liquid state with ρ(T)∌T2\rho(T) \sim T^2 when further increasing field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field Hc2H_{c_2}. In zero field there is a large residual linear term Îș0/T\kappa_0/T, and the field dependence of Îș0/T\kappa_0/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2_2As2_2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.Comment: 4 pages, 4 figures - replaces arXiv:0909.485
    • 

    corecore