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sed by using the homological integral, a recently introduced tool
for studying infinite dimensional AS-Gorenstein Hopf algebras. It
is shown that the skew-group algebra of a universal enveloping
algebra of a finite dimensional Lie algebra g with a finite subgroup
G of automorphisms of g is Calabi–Yau if and only if the universal
enveloping algebra itself is Calabi–Yau and G is a subgroup of the
special linear group SL(g). The Noetherian cocommutative Calabi–
Yau Hopf algebras of dimension not larger than 3 are described.
The Calabi–Yau property of Sridharan enveloping algebras of
finite dimensional Lie algebras is also discussed. We obtain some
equivalent conditions for a Sridharan enveloping algebra to be
Calabi–Yau, and then partly answer a question proposed by Berger.
We list all the nonisomorphic 3-dimensional Calabi–Yau Sridharan
enveloping algebras.

© 2010 Elsevier Inc. All rights reserved.

Introduction

We work over a fixed field k which is assumed to be algebraically closed and of characteristic zero
and is assumed to be the field of complex numbers C if necessary.

Calabi–Yau algebras are studied in recent years because of their applications in algebraic geometry
and mathematical physics. The aim of this paper is to try to understand cocommutative Calabi–Yau
Hopf algebras of lower dimensions. We take the Calabi–Yau (CY) property from Ginzburg [9], the
definition will be recalled in Section 2. The main tool used in this paper is the homological integral
of an AS-Gorenstein Hopf algebra recently introduced by Lu, Wu and Zhang in [16] and extended to
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general AS-Gorenstein algebras (the definition is recalled in Section 1) by Brown and Zhang in [5]. As
a consequence of Kostant–Larson’s work (cf. [14,25]), we know that any cocommutative Hopf algebra
(over an algebraically closed field) is isomorphic to a skew-group (or smash product) algebra of the
universal enveloping subalgebra of the primitive elements and the group subalgebra of the group-like
elements. Hence it is necessary to discuss how the homological integral works on the skew-group
algebras. In Section 1, we discuss finite group actions on AS-Gorenstein algebras. Let A be an AS-
Gorenstein algebra and G be a finite group. If there is a G-action on A such that the G-action is
compatible with the augmentation map of A, then A is called an augmented G-module algebra. If
A is an augmented G-module algebra which is AS-Gorenstein, then we show in Section 1 that the
skew-group algebra A#kG is also AS-Gorenstein and the (left) homological integral

∫ l
A is a left G-

module and the (left) homological integral of A#kG is equal to the G-invariants of the left G-module∫ l
A #kG (Proposition 1.1). A necessary and sufficient condition for a Noetherian Hopf algebra to be

CY is given in Section 2. It turns out that a Noetherian CY Hopf algebra must be AS-regular and has
bijective antipode. When the AS-Gorenstein Hopf algebra is the universal enveloping algebra of a finite
dimensional Lie algebra, we have the following result (Theorem 3.4).

Theorem. Let g be a finite dimensional Lie algebra, and G ⊆ AutLie(g) be a finite group. Then the skew-group
algebra U (g)#kG is CY of dimension d if and only if U (g) is CY of dimension d and G ⊆ SL(g).

Let H be a Hopf algebra, G(H) the group of the group-like elements of H and P (H) the space
of the primitive elements of H . Applying the above theorem, we can list all cocommutative CY Hopf
algebras H of global dimension not larger than 3 such that G(H) is finite and P (H) is finite dimen-
sional. It is easy to determine the 1-dimensional Noetherian CY cocommutative Hopf algebras with
finite group G(H). They are the tensor products of the polynomial algebra k[x] with the group alge-
bras of some finite groups. In the 2-dimensional case, such a Hopf algebras H must be isomorphic
to a skew-group algebra of the form H ∼= k[x, y]#kG , where G is a finite group and the G-action on
k[x, y] is induced by a group map ν : G → SL(2,k) (Theorem 4.2).

For the 3-dimensional case, we show that there are only 4 cases of nonisomorphic 3-dimensional
Lie algebras whose universal enveloping algebras are CY (Proposition 4.6). A 3-dimensional Noetherian
CY cocommutative Hopf algebra H with finite group G(H) and finite dimensional P (H) is isomorphic
to a skew-group algebra of form U (g)#kG , where the Lie algebra g is one of the Lie algebras listed in
Proposition 4.6 and G is a finite group with a group morphism ν : G → AutLie(g) such that im(ν) is a
subgroup of SL(g) (Theorem 4.7).

In the last section, we deal with the Sridharan enveloping algebras of finite dimensional Lie al-
gebras. In general, a Sridharan enveloping algebra is no longer a Hopf algebra. However, a Sridharan
enveloping algebra is a cocycle deformation of a cocommutative Hopf algebras, and the CY property
of the Sridharan enveloping algebras is closely related to that of the universal enveloping algebras.
Hence it is proper to include the discussion of Sridharan enveloping algebras in this paper. Sridharan
enveloping algebras were introduced in [24] in order to discuss certain representations of Lie alge-
bras. Let g be a finite dimensional Lie algebra. A Sridharan enveloping algebra is related to a 2-cocycle
f ∈ Z 2(g,k) of g, and is usually denoted by U f (g) (the definition is recalled in the final section). The
class of Sridharan enveloping algebras includes many interesting algebras, such as Weyl algebras. Ho-
mological properties, especially the Hochschild (co)homology and cyclic homology, are studied by
several authors [24,11,18,19]. Berger proposed at the end of his recent paper [2] a question: to find
some necessary and sufficient conditions for a Sridharan enveloping algebra to be CY. We get the
following result (Theorem 5.3) which in part answers Berger’s question [2].

Theorem. Let g be a finite dimensional Lie algebra, and f ∈ Z 2(g,k) be an arbitrary 2-cocycle of g. The
following statements are equivalent.

(i) The Sridharan enveloping algebra U f (g) is CY of dimension d.
(ii) The universal enveloping algebra U (g) is CY of dimension d.

(iii) dimg = d, and g is unimodular [13], that is, for any x ∈ g, tr(adg(x)) = 0.
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We also list all the 3-dimensional CY Sridharan enveloping algebras at the end of the paper
(Theorem 5.5). There are exactly 7 classes of nonisomorphic 3-dimensional CY Sridharan enveloping
algebras.

1. Homological integrals of skew group algebras

Let A be a left Noetherian augmented algebra with a fixed augmentation map ε : A −→ k. Recall
that A is said to be left Artin–Schelter Gorenstein (AS-Gorenstein for short, cf. [5]), if

(i) inj dimA A = d < ∞,
(ii) dim Extd

A( Ak, A A) = 1 and Exti
A( Ak, A A) = 0 for all i �= d.

If A is a right Noetherian augmented algebra with a fixed augmentation map, and the right ver-
sions of (i) and (ii) above hold, then A is said to be right AS-Gorenstein. If A is both left and right
AS-Gorenstein (relative to the same augmentation map ε), then we say that A is AS-Gorenstein. Fur-
thermore, if gl dim A < ∞, then A is called an AS-regular algebra.

The concept of a homological integral was first introduced in [16] for an AS-Gorenstein Hopf al-
gebra as a generalization of the classical concept of an integral for a finite dimensional Hopf algebra.
The concept was further extended to a general AS-Gorenstein algebra in [5]. It seems that the ho-
mological integral is a useful tool to study infinite dimensional noncocommutative algebras. Let A be
a left AS-Gorenstein algebra. Then Extd

A( Ak, A A) is a one-dimensional right A-module. Any nonzero

element in Extd
A( Ak, A A) is called a left homological integral of A. Write

∫ l
A for Extd

A( Ak, A A), and
call it, by a slight abuse of terminology, the homological integral of A. Similarly, if A is a right AS-
Gorenstein algebra, any nonzero element of the one-dimensional left module Extd

A(kA, A A) is called a
right homological integral of A. We denote it by

∫ r
A .

Let G be a finite group. A left G-module algebra A is called an augmented G-module algebra if
A has an augmentation map ε and ε is a G-map. For an augmented left G-module algebra A, the
skew group algebra A#kG is also an augmented algebra with the augmentation map ε : A#kG −→ k
defined by a#g 	→ ε(a) for all a ∈ A and g ∈ G . With this augmentation map, k is naturally an A#kG-
A#kG-bimodule. Since G is a finite group, A#kG is a left Noetherian algebra if A is left Noetherian.

Let M and N be left A#kG-modules. Then HomA(M, N) is a left G-module with the adjoint action:

g ⇀ f (m) = g · f
(

g−1 · m
)
,

for g ∈ G , f ∈ HomA(M, N) and m ∈ M . For a left G-module X , let X G = {x ∈ X | g · x = x, for all
g ∈ G} be the set of G-invariant elements. It is easy to see that

HomA#kG(M, N) = HomA(M, N)G . (1)

Since G is finite, the functor (−)G is exact. It follows that a left A#kG-module Q is projective (resp.
injective) if and only if it is projective (resp. injective) as an A-module. Also the G-module structure
on HomA(M, N) can be extended to the extension groups Exti

A(M, N), and the isomorphism (1) can
be extended to the following isomorphisms (cf. [17])

Exti
A#kG(M, N) ∼= Exti

A(M, N)G , for all i � 0. (2)

Now let A be a left AS-Gorenstein algebra of inj dim A A = d and consider the one-dimensional
module A#kGk with the module structure defined by the augmentation map ε . Let

· · · −→ P−n ∂−n−→ · · · ∂−2−→ P−1 ∂−1−→ P 0 −→ A#kGk −→ 0
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be a finitely generated projective resolution of the A#kG-module A#kGk. Then the resolution can be
regarded as a projective resolution of the A-module Ak. Applying the functor HomA(−, A#kG) to the
projective resolution above, we obtain a complex

· · · ←− HomA
(

P−n, A#kG
) ←− · · · ←− HomA

(
P−1, A#kG

)
←− HomA

(
P 0, A#kG

) ←− 0. (3)

Since G is a finite group, there are natural isomorphisms of vector spaces, for n � 0,

ϕn : HomA
(

P−n, A
) ⊗ kG −→ HomA

(
P−n, A#kG

)
(4)

defined by ϕn( f ⊗ g)(p) = f (p)#g for f ∈ HomA(P−n, A), g ∈ G and p ∈ P−n .
Let Y A be an A-module. The tensor space Y ⊗ kG is a right A#kG-module defined by

(y ⊗ g) · (a#h) = y · (ga) ⊗ gh, for y ∈ Y , g,h ∈ G and a ∈ A.

We write this right A#kG-module as Y #kG . Since HomA(P−n, A) is a right A-module,
HomA(P−n, A) ⊗ kG is a right A#kG-module. HomA(P−n, A#kG) is also a right A#kG-module. Thus
the natural isomorphisms in (4) are in fact right A#kG-module isomorphisms

ϕn : HomA
(

P−n, A
)
#kG −→ HomA

(
P−n, A#kG

)
. (5)

Observe that A is a left A#kG-module and HomA(P−n, A) is a left G-module. With the diagonal G-
action, HomA(P−n, A)#kG becomes a left G-module. On the other side, HomA(P−n, A#kG) is also
a left G-module with the adjoint G-action. Thus it is not hard to see that both HomA(P−n, A)#kG
and HomA(P−n, A#kG) are left G- and right A#kG-bimodules, and the isomorphisms ϕn in (5) are
isomorphisms of G-A#kG-bimodules.

Now one may check that the complex (3) is a complex of G-A#kG-bimodules, and it is isomorphic
to the following complex of G-A#kG-bimodules

· · · ←− HomA
(

P−n, A
)
#kG

(∂−n)∗⊗id←− · · · (∂−2)∗⊗id←− HomA
(

P−1, A
)
#kG

(∂−1)∗⊗id←− HomA
(

P 0, A
)
#kG ←− 0.

By taking the cohomologies of the complex (3) and those of the complex above we arrive at isomor-
phisms of G-A#kG-bimodules:

Exti
A( Ak, A#kG) ∼= Exti

A( Ak, A A)#kG (6)

for all i � 0. Hence by (2), we have right A#kG-module isomorphisms

Exti
A#kG( A#kGk, A#kG) ∼= Exti

A( Ak, A#kG)G

∼= (
Exti

A( Ak, A A)#kG
)G

(7)

for all i � 0.
Summarizing the above we arrive at the following results.

Proposition 1.1. Let G be a finite group, A an augmented left G-module algebra. Assume A is a left AS-
Gorenstein algebra with inj dim A A = d. Then the following statements hold.
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(i) The left homological integral
∫ l

A is a one-dimensional left G-module, and the G-action is compatible with

the right A-module structure of
∫ l

A , that is; for g ∈ G, a ∈ A and t ∈ ∫ l
A , g(ta) = (gt)(ga).

(ii) A#kG is left AS-Gorenstein of inj dim A#kG(A#kG) = d, and as right A#kG-modules

l∫
A#kG

∼=
( l∫

A

#kG

)G

,

where the G acts on
∫ l

A #kG diagonally.

Proof. The statement (i) is evident, and the isomorphism in (ii) is a direct consequence of the iso-
morphisms in (7) if A#kG is left AS-Gorenstein.

What remains to be shown is that the left injective dimension of A#kG is d, and
dim Extd

A#kG( A#kGk, A#kG) = 1. Let

0 −→ A −→ Q 0 δ0−→ Q 1 δ1−→ · · · δd−1−→ Q d δd−→ · · · (8)

be an injective resolution of A#kG A. Since G is a finite group, all the Q i ’s are injective as left A-
modules. Hence coker δd−1 is injective as an A-module by the assumption that A A has injective
dimension d, which in turn implies that coker δd−1 is injective as an A#kG-module. Thus we may
assume that the resolution (8) ends at the dth position. Now tensoring (8) with kG , we obtain an
exact sequence

0 −→ A ⊗ kG −→ Q 0 ⊗ kG −→ Q 1 ⊗ kG −→ · · · −→ Q d ⊗ kG −→ 0.

For a left A#kG-module M , the space M ⊗ kG is a left A#kG-module defined by

(a#g) · (m ⊗ h) = a(gm) ⊗ gh.

Since Q i is injective as an A-module, Q i ⊗ kG is injective as an A#kG-module for all i � 0.
Therefore we obtain that the injective dimension of A#kG A#kG is not larger than d. We claim
that Extd

A#kG( A#kGk, A#kG) ∼= (
∫ l

A #kG)G �= 0. Assume that α is a nonzero element in
∫ l

A . Since

dim
∫ l

A = 1, there is an algebra map π : kG −→ k such that g · α = π(g)α for all g ∈ G . Let π−1

be the convolution inverse of π in the dual Hopf algebra kG∗ . Then π−1 is an algebra map from kG
to k. Hence π−1 defines a one-dimensional G-module. Since G is a finite group, we have that there
is an element 0 �= t ∈ kG such that gt = π−1(g)t for all g ∈ G . Now for g ∈ G , g · (α#t) = (g ·α)#gt =
π(g)π−1(g)α#t = α#t . The claim follows. Therefore inj dim A#kG A#kG = d. If 0 �= t′ ∈ kG is another
element such that g · (α#t′) = α#t′ for all g ∈ G , then we get gt′ = π(g)−1t′ = π−1(g)t′ for all
g ∈ G . Then we must have t′ = kt for some k ∈ k. Otherwise, there would be two one-dimensional
G-modules that are isomorphic to each other in the decomposition of the regular G-module, which
certainly contradicts the well-known result that in the decomposition of the regular representation of
a finite group the multiplicity of an irreducible representation equals its dimension (cf. [22, Sec. 2.4]).
Hence dim Extd

A#kG( A#kGk, A#kG) = 1. �
We certainly should not expect that

∫ l
A#kG

∼= kα#t such that α ∈ ∫ l
A and t is an integral of kG , see

the following example.

Example 1.2. Let G be a cyclic group of order p. Let λ be a generator of G . Assume that A is an
augmented G-module algebra and A is left AS-Gorenstein. Then A#kG is left AS-Gorenstein. In fact, if
G acts on

∫ l
A trivially, that is, λ ·α = α where 0 �= α ∈ ∫ l

A , then Extd
A#kG( A#kGk, A#kG) = kα#t where



1926 J.-W. He et al. / Journal of Algebra 324 (2010) 1921–1939
t = 1
p

∑p−1
i=0 λi . Now suppose G acts on

∫ l
A nontrivially. Then λ · α = ωα, where ω ∈ k is a pth root of

the unit. Assume that t′ = x0λ
0 + x1λ + · · · + xp−1λ

p−1 is such that λ · (α#t′) = α#t′ . Then we obtain

⎧⎪⎪⎨
⎪⎪⎩

x0 = ωxp−1
x1 = ωx0

...

xp−1 = ωxp−2.

Obviously, the linear equations above have an 1-dimensional solution space with a basis given by
(x0, x1, . . . , xp−2, xp−1) = (ω,ω2, . . . ,ωp−1,1). Let t′ = ωλ0 +ω2λ + · · · +ωp−1λp−2 + λp−1. Then one
can check that

Extd
A#kG( A#kGk, A#kG) ∼=

( l∫
A

#kG

)G

= kα#t′.

Let A be an augmented left G-module algebra. If A is right AS-Gorenstein, we want to know
what

∫ r
A#kG looks like. The right version of Proposition 1.1 also holds, but it is more complicated.

The algebra A can be viewed as an augmented right G-module algebra through the right G-action:
a · g = g−1a for a ∈ A and g ∈ G . We have the skew group algebra kG#A defined in the usual way.
There is an algebra isomorphism θ : A#kG −→ kG#A by a#g 	→ g#g−1a. Moreover, θ is compatible
with the augmentation maps of A#kG and kG#A respectively. Now we can deal with right A#kG-
modules as right kG#A-modules. Let M and N be right kG#A-modules. HomA(M, N) is a right G-
module through the G-action: ( f ↼ g)(m) = f (mg−1)g for f ∈ HomA(M, N), g ∈ G and m ∈ M . Also
we have HomkG#A(M, N) = HomA(M, N)G . Similar to Proposition 1.1, we have:

Proposition 1.3. Let G be a finite group, A be an augmented left G-module algebra. Assume A is a right
AS-Gorenstein algebra with inj dim A A = d. Then the following statements hold.

(i) The right homological integral
∫ r

A is a 1-dimensional right G-module, and the G-action is compatible
with the left A-module structure of

∫ r
A , that is; for g ∈ G, a ∈ A and t ∈ ∫ r

A , (at) · g = (a · g)(t · g) =
(g−1a)(t · g).

(ii) A#kG is right AS-Gorenstein and inj dim(A#kG)A#kG = d, also as left A#kG-modules:

r∫
A#kG

∼=
(
kG ⊗

r∫
A

)G

,

where the left A#kG-action on kG ⊗ ∫ r
A is given by (a#g) · (h ⊗ α) = gh ⊗ (h−1 g−1a)α for g,h ∈ G,

a ∈ A,α ∈ ∫ r
A , and the right G-action on kG ⊗ ∫ l

A is diagonal.

2. Homological integrals of Calabi–Yau Hopf algebras

In this section we study Noetherian CY Hopf algebras. We show that a Noetherian CY Hopf algebra
has trivial homological integrals, and its antipode must be bijective.

Let A be an algebra. Recall that A is said to be a Calabi–Yau algebra of dimension d (cf. [9,3]) if (i)
A is homologically smooth, that is; A has a bounded resolution of finitely generated projective A-A-
bimodules, (ii) Exti

Ae (A, Ae) = 0 if i �= d and Extd
Ae (A, Ae) ∼= A as A-A-bimodules, where Ae = A ⊗ Aop

is the enveloping algebra of A. In what follows, Calabi–Yau is abbreviated to CY for short.
Let A be an algebra, σ : A → A an algebra morphism, and M a right A-module. Denote by Mσ the

right A-module twisted by the algebra morphism σ . If N is an A-A-bimodule, we denote by 1Nσ the
bimodule whose right A-action is twisted by σ .
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Let H be a Hopf algebra with antipode S . We write k or kH for the trivial module defined by
the counit of H . Let M be an H-H-bimodule. Denote Mad the left adjoint H-module defined by
h · m = ∑

(h) h(1)mS(h(2)) for h ∈ H and m ∈ M .
Let D : H → H ⊗ Hop be the map defined by D = (1 ⊗ S) ◦ �. Then D is an algebra morphism, and

H ⊗ Hop is a free left (and a free right) H-module through D (see [5, Sect. 2]). We write L(H ⊗ Hop)

(resp. R(H ⊗ Hop)) for the left (resp. right) H-module defined through D . Let •H ⊗ H be the left
H-module defined by the left multiplication of H to the left factor, and H• ⊗ H be the free right
H-module defined by the right multiplication of H to the left factor. Then L(H ⊗ Hop) ∼= •H ⊗ H and
R(H ⊗ Hop) ∼= H• ⊗ H . The isomorphisms are given as follows:

ϕ : L
(

H ⊗ Hop) → •H ⊗ H, g ⊗ h 	→
∑
(g)

g(1) ⊗ hS2(g(2)), (9)

with its inverse

φ : •H ⊗ H → L
(

H ⊗ Hop), g ⊗ h 	→
∑
(g)

g(1) ⊗ hS(g(2)); (10)

and

ψ : R
(

H ⊗ Hop) → H• ⊗ H, g ⊗ h 	→
∑
(g)

g(1) ⊗ g(2)h, (11)

with its inverse

ξ : H• ⊗ H → R
(

H ⊗ Hop), g ⊗ h 	→
∑
(g)

g(1) ⊗ S(g(2))h. (12)

Clearly, L(H ⊗ Hop) is an H-He-bimodule and R(H ⊗ Hop) is an He-H-bimodule. Let M be an
H-H-bimodule. Then one has Mad ∼= HomHe (R(H ⊗ Hop), M). By [5, Lemma 2.2], the functor (−)ad

preserves injective modules. This property implies the key fact that the Hochschild cohomology of
a bimodule M over a Hopf algebra H can be computed through the extension groups of the trivial
module Hk by Mad, see [5, Lemma 2.4] or [10, Prop. 5.6]:

Lemma 2.1. Let H be a Hopf algebra, and M be an H-H-bimodule. Then we have Exti
He (H, M) ∼=

Exti
H ( Hk, Mad) for all i.

Let H be an AS-Gorenstein Hopf algebra. The left homological integrals
∫ l

H of H is a one-
dimensional right H-module, and the H-module structure is defined through an algebra morphism
π : H → k. We have an algebra automorphism ν : H → H defined by ν(h) = ∑

(h) π(h(1))h(2) for

h ∈ H . Then, as right H-modules,
∫ l

H
∼= kν . The following corollary is proved in [5, Prop. 4.5]. We

include the proof for the completeness here. Notice that the hypothesis that the antipode is bijective
is dropped.

Corollary 2.2. Let H be a Noetherian AS-Gorenstein Hopf algebra with injective dimension d. Then
Exti

He (H, He) = 0 for i �= d and Extd
He (H, He) = 1 H S2ν .

Proof. The proof is just a slight modification of that of [5, Prop. 4.5]. Since H is noetherian, we have

Exti
He

(
H, He) ∼= Exti

H

(
Hk, L

(
H ⊗ Hop))

∼= Exti
H ( Hk, H) ⊗H L

(
H ⊗ Hop).
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Hence Exti
He (H, He) = 0 for i �= d, and

Extd
He

(
H, He) ∼= kν ⊗H L

(
H ⊗ Hop) (a)∼= kν ⊗H ( •H ⊗ H)

(b)∼= 1 H S2ν,

where ν is the algebra automorphism of H corresponding to the left homological integrals
∫ l

H . The
isomorphism (a) is given by the isomorphism ϕ constructed through the map (9) above; and the
isomorphism (b) holds because the right He-module structure on •H ⊗ H induced by the isomorphism
ϕ is given as (g ⊗ h) · (x ⊗ y) = ∑

(x) gx(1) ⊗ yhS2(x(2)) for g,h, x, y ∈ H . �
Now we arrive at the main result of this section. Recall from [16] that an AS-Gorenstein Hopf

algebra is unimodular if
∫ l

H
∼= kH as right H-modules.

Theorem 2.3. Let H be a Noetherian Hopf algebra. Then H is CY of dimension d if and only if

(i) H is AS-regular with global dimension gl dim(H) = d and unimodular,
(ii) S2 is an inner automorphism of H.

Proof. Suppose that H is CY of dimension d. By [12, Lemma 4.1] the triangulated category Db
f d(H)

is a CY category of dimension d, where Db
f d(H) is the full triangulated subcategory of the derived

category of H formed by complexes whose homology is of finite total dimension. Hence gl dim H = d.
It is well known that, for i � 0,

Exti
H ( Hk, H) ∼= Exti

He

(
H,Homk( Hk, H)

) ∼= Exti
He (H, H ⊗ kH ),

where the left He-bimodule structure on H ⊗ kH is given by the left multiplication of H on the first
factor and the right H-action on the trivial module kH . Since H is CY of dimension d, we may choose
a finitely generated projective resolution of the He-module H as follows

P • : 0 −→ P−d −→ · · · −→ P−1 −→ P 0 −→ H −→ 0.

Then we have isomorphisms of complexes

HomHe
(

P •, H ⊗ kH
) ∼= HomHe

(
P •, He) ⊗He (H ⊗ kH )

∼= k ⊗H HomHe
(

P •, He) ⊗H H

∼= k ⊗H HomHe
(

P •, He). (13)

Let Q • := HomHe (P •, He). Since H is CY of dimension d, Q •[d] is a projective resolution of the He-
module H . Hence we have

k ⊗H HomHe
(

P •, He) = k ⊗H Q • �−→ kH [−d],

where the second map is a quasi-isomorphism of right H-modules. Note that the isomorphisms in
(13) are also right H-module morphisms. By taking the cohomology of the complexes in (13), we
obtain the statement (i).

According to Part (i) and Corollary 2.2, Extd
He (H, He) ∼= 1 H S2

. On the other hand, the CY property

of H implies Extd
He (H, He) ∼= H as H-H-bimodules. Hence H and 1 H S2

are isomorphic as H-H-
bimodules. Therefore S2 must be an inner automorphism.
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Conversely, since H is Noetherian and of finite global dimension, by [5, Lemma 5.2] H is homolog-
ically smooth. The assertion (i) and Corollary 2.2 insure Exti

He (H, He) = 0 and Extd
He (H, He) ∼= 1 H S2

.

The assertion (ii) tells us that 1 H S2
is isomorphic to H as an H-H-bimodule. �

3. Group actions on universal enveloping algebras

In this section we consider the universal enveloping Hopf algebra of a Lie algebra and study the
CY property of its smash product Hopf algebra. Let g be a finite dimensional Lie algebra, and U (g) the
universal enveloping algebra of g. Recall from [5, Prop. 6.3] that U (g) is an AS-regular Hopf algebra.
Now let G be a finite group. We say that g is a left G-module Lie algebra if there is a G-action on g

such that g is a left G-module and g[x, y] = [gx, gy] for all g ∈ G and x, y ∈ g. If g is a left G-module
Lie algebra, then U (g) is an augmented left G-module algebra. For a Lie algebra g, we write AutLie(g)

to be the group of Lie algebra automorphisms. If g is a left G-module Lie algebra, write the associated
group morphism as ν : G −→ AutLie(g).

Assume dim g = d. Consider the Chevalley–Eilenberg resolution of the trivial U (g)-module (cf. [6,
Ch. 8] or [15, Ch. 10]):

0 −→ U (g) ⊗ ∧dg
∂d−→ · · · ∂3−→ U (g) ⊗ g ∧ g

∂2−→ U (g) ⊗ g
∂1−→ U (g) −→ U (g)k −→ 0, (14)

where for x1, . . . , xn ∈ g,

∂n(1 ⊗ x1 ∧ · · · ∧ xn) =
n∑

i=1

(−1)i+1xi ⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn

+
∑

1�i< j�n

(−1)i+ j1 ⊗ [xi, x j] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂ j ∧ · · · ∧ xn.

Since g is a left G-module, ∧ng is a left G-module with the diagonal action. Thus U (g) ⊗ ∧ng is a left
U (g)#kG-module. It is not hard to check that the differentials in the resolution above are also left
G-module maps. Hence the resolution above is in fact a projective resolution of the left U (g)#kG-
module U (g)#kGk.

Lemma 3.1. Let G be a finite group, and g be a G-module Lie algebra of dimension d. Then U (g) is AS-regular
of global dimension d and as left G-modules

∫ l
U (g)

∼= ∧dg∗ , where left G-module action on g∗ is defined by

(g · β)(x) = β(g−1x) for g ∈ G, β ∈ g∗ and x ∈ g, and G acts on ∧dg∗ diagonally.

Proof. Since g is of dimension d, the universal enveloping algebra U (g) has global dimension
d (cf. [6, Ch. VIII]). The AS-regularity of U (g) is proved in [5, Prop. 6.3]. Applying the functor
HomU (g)(−, U (g)) to the projective resolution (14) of U (g)k above, we obtain that

∫ l
U (g)

is the ho-
mology at the final position of the following complex of left G- and right U (g)-modules (warning:
they are not G-U (g)-bimodules)

0 −→ HomU (g)

(
U (g), U (g)

) ∂1∗
−→ HomU (g)

(
U (g) ⊗ g, U (g)

) ∂2∗
−→ · · ·

∂d∗
−→ HomU (g)

(
U (g) ⊗ ∧dg, U (g)

) −→ 0,

which is isomorphic to the following complex of left G- and right U (g)-modules (also not bimodules)

0 −→ U (g)
δ0−→ g∗ ⊗ U (g)

δ1−→ · · · δd−1−→ ∧dg∗ ⊗ U (g) −→ 0. (15)
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Note that the left G-action on ∧ig∗ ⊗ U (g) is diagonal and ∧ig∗ ⊗ U (g) as a right U (g)-module is free.
The differential δi−1 is induced by ∂ i∗ (for i � 1) through the obvious isomorphisms HomU (g)(U (g) ⊗
∧ig, U (g)) ∼= ∧ig∗ ⊗ U (g).

Now let {x1, . . . , xd} be a basis of g and {x∗
1, . . . , x∗

d} the dual basis of g∗ . Note that the differentials
in the complex (15) are also right U (g)-module morphisms. The image of the element α = x∗

1 ∧ · · · ∧
x∗

d ⊗ 1 in the dth cohomology is nonzero. Otherwise it would imply that the dth cohomology is zero.
For β ∈ ∧dg∗ ⊗ U (g), let β be the image of β in the dth cohomology. Now for g ∈ G , g · α = g · α =
g · (x∗

1 ∧ · · · ∧ x∗
d)⊗1 = ωα, for some nonzero element ω ∈ k. Thus we obtain an isomorphism of left

G-modules:
∫ l

U (g)

∼=−→ ∧dg∗ sending α to x∗
1 ∧ . . . ∧ x∗

d . �
Let G be a group, g a left G-module Lie algebra. It is well known that U (g)#kG is a cocommutative

Hopf algebra with the coproduct and counit given by those of U (g) and of kG .

Lemma 3.2. Let G be a finite group. If g is a finite dimensional G-module Lie algebra, then U (g)#kG is an
AS-regular algebra.

Proof. Since g is finite dimensional, U (g) is an AS-regular algebra. Hence U (g)#kG has finite global
dimension. Now the statement follows from Propositions 1.1 and 1.3. �
Lemma 3.3. Let G be a finite group, and g a finite dimensional left G-module Lie algebra. If U (g)#kG is CY of
dimension d, then U (g) is CY of dimension d.

Proof. Write B for U (g)#kG . By Lemma 3.2, B is AS-regular of global dimension d. By Proposition 1.1,∫ l
B

∼= (
∫ l

U (g)
#kG)G . Choose a basis α#t of

∫ l
B with α ∈ ∫ l

U (g)
and t ∈ kG . Since B is a Noetherian

cocommutative Hopf algebra, by Theorem 2.3 the right B-module action on
∫ l

B is trivial. It follows
that α#t = (α#t) · (1#g) = α#tg for all g ∈ G . This implies tg = t for all g ∈ G and hence t is an
integral of kG . We may now assume t = ∑

g∈G g . For a ∈ U (g), we have

ε(a)α#t = (α#t) · (a#1) =
∑
(t)

α · (t(1)a)#t(2) =
∑
g∈G

α · (ga)#g,

which forces α · (ga) = ε(a)α for all g ∈ G . Replacing a by g−1a, we obtain α · a = ε(g−1a)α = ε(a)α

for all a ∈ U (g). Therefore, the right U (g)-action on the integral space
∫ l

U (g)
is trivial. Now the result

follows from Theorem 2.3. �
Theorem 3.4. Let g be a finite dimensional Lie algebra, and G ⊆ AutLie(g) a finite group. Then the skew group
algebra U (g)#kG is a CY algebra of dimension d if and only if U (g) is a CY algebra of dimension d and G ⊆
SL(g).

Proof. Suppose G ⊆ SL(g) and U (g) is CY. As before, write B for U (g)#kG . Since B is a cocommutative
Hopf algebra, by Theorem 2.3 we only need to show that

∫ l
B

∼= kB as right B-modules, where kB is the

trivial right B-module. From Proposition 1.1, we have
∫ L

B
∼= (

∫ l
U (g)

#kG)G . By Lemma 3.1,
∫ l

U (g)
∼= ∧dg∗

as left G-modules. Let {x∗
1, . . . , x∗

d} be a basis of g∗ . We have g · (x∗
1 ∧· · ·∧ x∗

d) = det(g)−1x∗
1 ∧ . . .∧ x∗

d =
x∗

1 ∧ · · · ∧ x∗
d for g ∈ G ⊆ SL(g). If α is a basis of

∫ l
U (g)

, then g ·α = α for all g ∈ G . Assume that α#t is

an element in (
∫ l

U (g)
#kG)G for some t ∈ kG . Then α#t = g · (α#t) = g ·α#gt = α#gt for all g ∈ G . So

we have gt = t for all g ∈ G . Hence t must be an integral of kG . Now we may assume that α#t is a
basis of

∫ l
B with t a nonzero integral of kG . By assumption, U (g) is a cocommutative CY Hopf algebra.

It follows from Theorem 2.3 that the right U (g)-module structure on
∫ l

U (g)
is trivial. Now for a ∈ U (g)

and g ∈ G , (α ⊗ t) · (a#g) = ∑
(t) α · (t(1)a) ⊗ t(2)g = ∑

(t) α ⊗ ε(t(1)a)t(2) g = α ⊗ ε(a)tg = ε(a)α ⊗ t =
εB(a#g)α ⊗ t . Thus the right B-module structure of

∫ l
B is trivial. Therefore B is a CY Hopf algebra of

dimension d.
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Conversely, assume B is a CY algebra. By Lemma 3.3, U (g) is CY. By the proof of Lemma 3.3,
we may assume that α ⊗ t is a basis of

∫ l
B with t an integral of kG and α ∈ ∫ l

U (g)
. Note that

∫ l
B

∼=
(
∫ l

U (g)
#kG)G . Hence for g ∈ G , α ⊗ t = g · (α ⊗ t) = g · α ⊗ gt = g · α ⊗ t . We get g · α = α. This

implies that the left G-action on
∫ l

U (g)
= ∧dg∗ is trivial. Thus we have det(g) = 1 for all g ∈ G , i.e.,

G ⊆ SL(g). �
Remark 3.5. If the Lie algebra g is abelian, then U (g) is a polynomial algebra. In this case, the CY
property of the skew group algebra U (g)#kG has been shown in [8, Example 24].

Now let G be an arbitrary finite group, g a finite dimensional G-module Lie algebra. As before, we
let ν : G −→ AutLie(g) be the associated group map. From the proof of the theorem above, we obtain

Corollary 3.6. Let G and g be as above. Then U (g)#kG is CY if and only if U (g) is CY and im(ν) ⊆ SL(g).

4. Cocommutative CY Hopf algebras of low dimensions

Let A be an augmented algebra with a fixed augmentation map ε : A −→ k. If A is a CY algebra of
dimension d, then by [12, Lemma 4.1] the shift functor [d] of the triangulated category Db

f d(A) is a

(graded) Serre functor (see the appendix of [4]), where Db
f d(A) is the full triangulated subcategory of

the derived category of A consisting of complexes with finite dimensional total cohomologies. Hence
Extd

A( Ak, Ak) ∼= Ext0
A( Ak, Ak) ∼= k.

Now let A = U (g) be the universal enveloping algebra of a Lie algebra g of dimension d. Tensoring
with kA the Chevalley–Eilenberg resolution of Ak, we obtain the following complex:

0 −→ ∧dg
δd−→ · · · δ3−→ g ∧ g

δ2−→ g
δ1−→ k −→ 0, (16)

where the differential is given as, for 2 � n � d, and x1, . . . , xn ∈ g,

δn(x1 ∧ · · · ∧ xn) =
∑

1�i< j�n

(−1)i+ j[xi, x j] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂ j ∧ · · · ∧ xn,

and δ1 = 0. The nth homology of the complex above is TorA
n (kA, Ak).

The following lemma can be deduced from [5, Proposition 6.3].

Lemma 4.1. Let g be a Lie algebra of dimension d. The following are equivalent.

(i) U (g) is a CY algebra.
(ii) Extd

A( AkAk) �= 0.
(iii) The differential δd in the complex (16) is zero.
(iv) tr(adg(x)) = 0 for all x ∈ g.

Proof. (i) ⇒ (ii) ⇒ (iii) are obvious. (iv) ⇒ (i) follows from [5, Proposition 6.3]. We just need to
show that (iii) ⇒ (iv). Assume δd = 0. Let {x1, . . . , xd} be a basis of g. Then

0 = δd(x1 ∧ · · · ∧ xd)

=
∑

1�i< j�d

(−1)i+ j[xi, x j] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂ j ∧ · · · ∧ xd

=
d∑

i=1

(−1)i tr
(
adg(xi)

)
x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xd.

We have tr(adg(xi)) = 0 for all 1 � i � d. �
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Let H be a Hopf algebra. Denote by P (H) the space of all primitive elements of H and denote by
G(H) the group of all group-like elements of H .

Theorem 4.2. Let H be a cocommutative Hopf algebra such that dim P (H) < ∞ and G(H) is finite. Then
H is CY of dimension 2 if and only if there is a finite group G and a group map ν : G → SL(2,k) such that
H ∼= k[x, y]#kG, where the G-action on k[x, y] is given by ν .

Proof. The sufficiency follows from Corollary 3.6. For the necessity, it is well known that a cocommu-
tative Hopf algebra H over an algebraic closed field is isomorphic to U (g)#kG , where g = P (H) is the
Lie algebra of all the primitive elements of H and G = G(H) is the group of the group-like elements
of H (cf. [14,25]). Since H is CY of dimension 2, by Lemma 3.3, U (g) is CY of dimension 2. Hence we
get the global dimension of U (g) is 2, which implies dim(g) = 2. By Lemma 4.1, g must be abelian.
Hence U (g) ∼= k[x, y]. The rest of the proof follows from Corollary 3.6. �
Remark 4.3. Let K = im(ν) ⊆ SL(2,k) and N = ker(ν). Then N is a normal subgroup of G . There is a
weak H-action on the group algebra kN (cf. [1]), and there is a map σ : K × K −→ kN so that kG is
isomorphic to the crossed product of kN and K , that is; kG ∼= kN#σ kK (cf. [1] or [20, Ch. 4]). Since
K ⊆ SL(2,k), K acts naturally on k[x, y]. So K acts on k[x, y]⊗kN diagonally. The map σ : K × K −→
kN may be extended to K × K −→ k[x, y] ⊗ kN (the map is also denoted by σ ). Then one can check
a CY cocommutative pointed Hopf algebra as in Theorem 4.2 has the form H ∼= (k[x, y] ⊗ kN)#σ kK .

Next we discuss 3-dimensional CY cocommutative Hopf algebras. We know that a cocommuta-
tive Hopf algebra is the skew-group algebra of a universal enveloping algebra of a Lie algebra and
a group algebra. Let us now deal with 3-dimensional Lie algebras. By Lemma 4.1, we may list all
3-dimensional Lie algebras whose universal enveloping algebra is CY, since the 3-dimensional Lie al-
gebras are classified completely. However, let us first get a view of the Lie bracket of such Lie algebras
over an arbitrary basis. Let g be a 3-dimensional vector space with a basis {x, y, z}. Define a bracket
on g as follows:

[x, y] = ax + by + wz,

[x, z] = cx + v y − bz,

[y, z] = ux − cy + az, (17)

where a,b, c, u, v, w ∈ k. A direct verification shows that g is a Lie algebra.

Lemma 4.4. With the bracket defined above, g is a Lie algebra.

Now we have the following easy but useful result.

Proposition 4.5. Let g be a 3-dimensional Lie algebra, and {x, y, z} be a basis of g. Then U (g) is a CY algebra
if and only if the Lie bracket is given by (17).

Proof. This is an immediate consequence of Theorems 3.2 and 3.6 and Lemma 5.8 of [3]. �
Let g be a 3-dimensional vector space. Fix a basis {x, y, z} of g. Proposition 4.5 states that, given

a sextuple (a,b, c, u, v, w) ∈ k6, there is a Lie bracket on g defined by this sextuple via (17) so that
the universal enveloping algebra of g is a 3-dimensional CY algebra. Moreover, any 3-dimensional
CY universal enveloping algebra is obtained in this way. We list below all 3-dimensional Lie algebras
whose universal enveloping algebras are CY.
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Proposition 4.6. Let g be a finite dimensional Lie algebra. Then U (g) is CY of dimension 3 if and only if g is
isomorphic to one of the following Lie algebras:

(i) The 3-dimensional simple Lie algebra sl(2,k);
(ii) g has a basis {x, y, z} such that [x, y] = y, [x, z] = −z and [y, z] = 0;

(iii) The Heisenberg algebra, that is; g has a basis {x, y, z} such that [x, y] = z and [x, z] = [y, z] = 0;
(iv) The 3-dimensional abelian Lie algebra.

Proof. Note that by Proposition 4.5 the universal enveloping algebras of the Lie algebras listed above
are CY of dimension 3. We show that they are the only possible cases. We divide the 3-dimensional
Lie algebras into 4 classes:

Case 1: dim[g,g] = 3, that is, g = [g,g];
Case 2: dim[g,g] = 2;
Case 3: dim[g,g] = 1;
Case 4: dim[g,g] = 0 or g is abelian.

Case 1. If g = [g,g], then it is well known that g ∼= sl(2,k). This gives us the Lie algebra (i).
Case 2. Assume that the Lie algebra g has dim[g,g] = 2. We choose a proper basis {x, y, z} for g

so that g satisfies (cf. [7]):

(a) [x, y] = y, [x, z] = μz and [y, z] = 0, where 0 �= μ ∈ C; or
(b) [x, y] = y, [x, z] = y + z and [y, z] = 0.

Since g is CY, it follows from Proposition 4.5 that the Lie bracket of g must satisfy the relations in (17).
In the case (a), we must have μ = −1. So g is the Lie algebra given by (ii). Since the defining relations
in the case (b) do not satisfy (17), the Lie bracket defined in (b) does not define a Lie algebra with CY
universal enveloping algebra.

Case 3. Assume that the Lie algebra g has dim[g,g] = 1. Similar to Case 2, by choosing a proper
basis {x, y, z}, we see that g is determined by either of the following two cases:

(a) [g,g] is contained in the center of g. In this case, g is the Heisenberg algebra: [x, y] = z, and
[x, z] = [y, z] = 0.

(b) [g,g] is not contained in the center of g. In this case, we have: [x, y] = y and [x, z] = [y, z] = 0.

Clearly, the Lie algebra defined by the case (b) does not satisfy the relations in (17), and hence its
universal enveloping algebra can not be CY. Therefore, we have only the Heisenberg Lie algebra (iii).

Case 4. When a 3-dimensional Lie algebra is abelian, then its universal enveloping algebra is cer-
tainly CY. This yields the class (iv). �

Now, similar to Theorem 4.2, we may write down all possible 3-dimensional Noetherian CY co-
commutative Hopf algebras with a finite number of group-like elements.

Theorem 4.7. Let H be a cocommutative Hopf algebra such that dim P (H) < ∞ and G(H) is finite. Then H
is CY of dimension 3 if and only if H ∼= U (g)#kG, where g is one of the 3-dimensional Lie algebras listed in
Proposition 4.6 and G is a finite group with a group morphism ν : G → AutLie(g) such that im(ν) is also a
subgroup of SL(g).

Proof. The proof is similar to that of Theorem 4.2. �
Remark 4.8. The cocommutative Hopf algebra discussed in this section possesses finite number of
group-like elements. If the group of group-like elements is infinite, then the situation becomes very
complicated. For an infinite group, it is hard to determine when the group algebra is CY, even in the
low dimensional cases. However, there are some examples of CY group algebras of low dimensions
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(see [16]). If G is a finitely generated group such that kG is Noetherian and is of GK-dimension 1,
then G ∼= Z (cf. [16, Prop. 8.2]). In this case, kG is CY of dimension 1. Example 8.5 of [16] provides us
an example of Noetherian affine CY group algebra of dimension 2.

5. Sridharan enveloping algebras

In this section, we discuss the CY property of a Sridharan enveloping algebra of a finite dimen-
sional Lie algebra. In general, a Sridharan enveloping algebra is no longer a Hopf algebra, but a cocycle
deformation of a cocommutative Hopf algebra or a Poincaré–Birkhoff–Witt (PBW) deformation of a
polynomial algebra (cf. [24,18,19]). We will see that the CY property of a Sridharan enveloping algebra
is closely related to the CY property of a universal enveloping algebra. The class of Sridharan algebras
contains many interesting algebras, such as Weyl algebras. Many homological properties of Sridharan
enveloping algebras have been discussed in [24,11,18,19], especially the Hochscheld (co)homology
and the cyclic homology. In [18], Nuss listed all nonisomorphic Sridharan enveloping algebras of 3-
dimensional Lie algebras. Based on these results, we obtain in this section some equivalent conditions
for a Sridharan enveloping algebra of a finite dimensional Lie algebra to be CY. We then list all pos-
sible nonisomorphic 3-dimensional CY Sridharan enveloping algebras, and partly answer a question
proposed by Berger at the end of [2].

Let g be a finite dimensional Lie algebra, and let f ∈ Z 2(g,k) be an arbitrary 2-cocycle, that is;
f : g × g → k such that

f (x, x) = 0 and f
(
x, [y, z]) + f

(
y, [z, x]) + f

(
z, [x, y]) = 0

for all x, y, z ∈ g. The Sridharan enveloping algebra of g is defined to be the associative algebra
U f (g) = T (g)/I , where I is the two-side ideal of T (g) generated by the elements

x ⊗ y − y ⊗ x − [x, y] − f (x, y), for all x, y ∈ g.

For x ∈ g, we still denote by x its image in U f (g). Clearly, U f (g) is a filtered algebra with the as-
sociated graded algebra gr(U f (g)) being a polynomial algebra. By [24, Cor. 3.3], there is one to one
correspondence between the group of the algebra automorphisms θ : U f (g) → U f (g) such that the
associated graded map gr(θ) is the identity, and the group Z 1(g,k) of the first cocycles. Thus given
a 1-cocycle h ∈ Z 1(g,k), there is an algebra automorphism ξ f : U f (g) −→ U f (g), for any 2-cocycle
f ∈ Z 2(g,k), defined by

ξ f (x) = x + h(x) (18)

for all x ∈ g. When f = 0, the map (18) defines an algebra automorphism ξ : U (g) −→ U (g). Clearly
ξ f has an inverse given by ξ−1

f (x) = x − h(x) for all x ∈ g.

In the sequel, we fix a 2-cocycle f ∈ Z 2(g,k) and let A = U f (g), and Ae = A ⊗ Aop . Define a linear
map D : g −→ Ae by D(x) = x ⊗ 1 − 1 ⊗ x for all x ∈ g. By [24], D induces an algebra morphism
U (g) −→ Ae , still denoted by D . Thus Ae can be viewed both as a left and as a right U (g)-module.
Now let ξ : U (g) → U (g) and ξ f : A → A be defined by (18). Since ξ f A1 ⊗ Aop is a left Ae-module, it
is also a left U (g)-module. We have the following isomorphisms.

Lemma 5.1. As left U (g)- and right Ae-bimodules,

ξ
(

A ⊗ Aop) ∼= 1 Aξ−1
f ⊗ Aop,

ξ−1(
A ⊗ Aop) ∼= 1 Aξ f ⊗ Aop.
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Proof. It is easy to check that the following diagram of algebra morphisms is commutative.

U (g)

ξ

D
A ⊗ Aop

ξ f ⊗id

U (g)
D

A ⊗ Aop.

It follows that ξ (A ⊗ Aop) ∼= ξ f A1 ⊗ Aop as left U (g)- and right Ae-bimodules. On the other hand, we

have the U (g)-Ae-bimodule isomorphism ξ−1
f ⊗ id : ξ f A1 ⊗ Aop −→ 1 Aξ−1

f ⊗ Aop . The composite of
the aforementioned two isomorphisms gives us the desired isomorphism.

The second isomorphism in the lemma can be proved similarly. �
As U (g) is a Hopf algebra, the space k is a trivial U (g)-U (g)-bimodule. Thus kξ is a right U (g)-

module twisted by the automorphism ξ .

Lemma 5.2. As right Ae-modules, kξ ⊗U (g) Ae ∼= 1 Aξ f .

Proof. Consider the exact sequence of right U (g)-modules:

0 −→ I −→ U (g)
ε−→ k −→ 0.

Applying the functor − ⊗U (g)
1U (g)ξ , we obtain the following exact sequence of right U (g)-modules:

0 −→ Iξ −→ U (g)ξ −→ kξ −→ 0.

By [24, Prop. 5.2], Ae is a free U (g)-module on both sides. Tensoring the above exact sequence
with Ae , we obtain the following exact sequence of right Ae-modules:

0 −→ Iξ ⊗U (g) Ae −→ U (g)ξ ⊗U (g) Ae −→ kξ ⊗U (g) Ae −→ 0,

which is isomorphic to the following sequence of right Ae-modules:

0 −→ I ⊗U (g)
ξ−1(

Ae) −→ U (g) ⊗U (g)
ξ−1(

Ae) −→ k ⊗U (g)
ξ−1(

Ae) −→ 0.

By Lemma 5.1, the sequence above is isomorphic to the following exact sequence of right Ae-modules:

0 −→ I ⊗U (g)

( 1Aξ f ⊗ Aop) −→ U (g) ⊗U (g)

( 1Aξ f ⊗ Aop) −→ k ⊗U (g)

( 1Aξ f ⊗ Aop) −→ 0.

Hence we obtain the following right Ae-module isomorphisms.

kξ ⊗U (g) Ae ∼= k ⊗U (g)

( 1 Aξ f ⊗ Aop) ∼=
1 Aξ f ⊗ Aop

D(I)( 1 Aξ f ⊗ Aop)
.

On the other hand, by a right version of the proof of [24, Prop. 5.3] we have the following exact
sequence of right Ae-modules:

0 −→ I ⊗U (g)

(
A ⊗ Aop) −→ A ⊗ Aop −→ A −→ 0.
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Tensoring it with 1Aξ f over A, we obtain an exact sequence of right Ae-modules:

0 −→ I ⊗U (g)

(
A ⊗ Aop) ⊗A

1 Aξ f −→ (
A ⊗ Aop) ⊗A

1 Aξ f −→ A ⊗A
1 Aξ f −→ 0,

which is isomorphic to

0 −→ I ⊗U (g)

( 1 Aξ f ⊗ Aop) −→ 1 Aξ f ⊗ Aop −→ 1 Aξ f −→ 0.

Therefore as right Ae-modules
1 Aξ f ⊗Aop

D(I)( 1 Aξ f ⊗Aop)

∼= 1 Aξ f . The proof is then complete. �
Theorem 5.3. Let g be a finite dimensional Lie algebra. Then for any 2-cocycle f ∈ Z 2(g,k), the following
statements are equivalent.

(i) The Sridharan enveloping algebra U f (g) is CY of dimension d.
(ii) The universal enveloping algebra U (g) is CY of dimension d.

(iii) dimg = d and g is unimodular [13], that is, for any x ∈ g, tr(adg(x)) = 0.

Proof. Following Lemma 4.1 it is sufficient to show that (i) and (ii) are equivalent. We show first
(ii) ⇒ (i). Assume that U (g) is CY of dimension d. Then dim(g) = d. Note that U (g) is a cocommu-
tative Hopf algebra. By Theorem 2.3, RHomU (g)(k, U (g)) ∼= k[d] as objects in the derived category of
complexes of right U (g)-modules, where k is the trivial right U (g)-module. Once again we write A
for U f (g). Recall that Ae is a free U (g)-module. Now let P • be the Chevalley–Eilenberg resolution of
the trivial left U (g)-module k. Then Ae ⊗U (g) P • is the standard resolution of A as a left Ae-module
(also see [11, Prop. 3]). It follows that we have the following isomorphisms in the derived category
D◦(Ae) of complexes of right Ae-modules:

RHomAe (A, Ae) ∼= HomAe
(

Ae ⊗U (g) P •, Ae)
∼= HomU (g)

(
P •, Ae)

∼= HomU (g)

(
P •, U (g)

) ⊗U (g) Ae

∼= RHomU (g)

(
k, U (g)

) ⊗U (g) Ae

∼= k[−d] ⊗U (g) Ae

(a)∼= A[−d],
where the isomorphism (a) follows from the right version of the proof of [24, Prop. 5.3]. Therefore
U f (g) = A is a CY algebra of dimension d.

(i) ⇒ (ii). Assume that A = U f (g) is CY of dimension d. The first four isomorphisms above are still
valid, and thus we have

RHomAe
(

A, Ae) ∼= RHomU (g)

(
k, U (g)

) ⊗U (g) Ae (19)

as right Ae-modules. Since A is CY of dimension d and Ae is a free left U (g)-module,
Hi RHomU (g)(k, U (g)) = 0 for i �= d and Hd RHomU (g)(k, U (g)) �= 0. Hence RHomU (g)(k, U (g)) ∼=
kξ [−d], where ξ is, by [5, Prop. 6.3], the algebra automorphism ξ : U (g) → U (g) defined by
ξ(x) = x + tr(adg(x)) for all x ∈ g. Let h = tr(adg(−)) : g → k. Then h ∈ Z 1(g,k). Now the 1-cocycle
h also defines an algebra automorphism ξ f : A → A. Combining the isomorphisms in (19) and the
isomorphism in Lemma 5.2, we obtain the following isomorphisms:

A[−d] ∼= kξ [−d] ⊗U (g) Ae ∼= 1 Aξ f .
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Thus we have an A-A-bimodule isomorphism: A ∼= 1 Aξ f . It follows that the automorphism ξ f : A → A
must be inner. That is, ξ f (a) = u−1au for some unit u ∈ A. It is easy to see that u ∈ k. Therefore
ξ f = id and h = tr(adg(−)) = 0. By Lemma 4.1, U (g) is CY. Moreover U (g) is of dimension d. �

The proof of Theorem 5.3 yields a more general fact about rigid dualizing complexes (for the
definition, see [26]) of Sridharan enveloping algebras. Let g be a finite dimensional Lie algebra, and
f ∈ Z 2(g,k) a 2-cocycle. Let A = U f (g) as before. By [26, Cor. 8.7] or [27, Prop. 1.1], the rigid dualizing
complex R of A exists. Moreover, R is invertible and R−1 = RHomAe (A, Ae). Notice that the linear
map h = tr(adg(−)) : g → k is a 1-cocycle of g. As early pointed out at the beginning of this section,
h defines both an isomorphism ξ on U (g) and an isomorphism ξ f on U f (g). Now we have the
following corollary which generalizes [27, Theorem A] to Sridharan enveloping algebras.

Corollary 5.4. Let g be a Lie algebra of dimension d, and f ∈ Z 2(g,k) a 2-cocycle. Then the rigid dualizing
complex of the Sridharan enveloping algebra U f (g) is 1U f (g)ζ f [d], where ζ f : U f (g) → U f (g) is an algebra
automorphism, and is defined by

ζ f (x) = x − tr
(
adg(x)

)
, for all x ∈ g.

Proof. Let A = U f (g). By [5, Prop. 6.3], RHomU (g)(k, U (g)) ∼= kξ [−d]. Following the isomorphisms in
(19), we have

RHomAe
(

A, Ae) ∼= kξ [−d] ⊗U (g) Ae.

By Lemma 5.2, RHomAe (A, Ae) ∼= 1 Aξ f [−d]. Therefore the rigid dualizing complex of A is R =
1 Aξ−1

f [d]. Write ζ f for ξ−1
f , We obtain the desired result. �

Now we focus on 3-dimensional CY Sridharan enveloping algebras. By Theorem 5.3, such an alge-
bra must be constructed from a 3-dimensional Lie algebra. Combining Proposition 4.6, Theorem 5.3
and [18, Theorem 1.3], we may list all possible nonisomorphic 3-dimensional CY Sridharan enveloping
algebras.

Theorem 5.5. Let U f (g) be a Sridharan enveloping algebra of a finite dimensional Lie algebra g. Then U f (g)

is CY of dimension 3 if and only if U f (g) is isomorphic to k〈x, y, z〉/(R) with the commuting relations R listed
in the following table:

Case {x, y} {x, z} {y, z}
1 z −2x 2y
2 y −z 0
3 z 0 0
4 0 0 0
5 y −z 1
6 z 1 0
7 1 0 0

where {x, y} = xy − yx.

Note that in the above table the cases 1–4 give the CY universal enveloping algebras listed in
Proposition 4.6.

Let g be a finite dimensional Lie algebra, and f ∈ Z 2(g,k) a 2-cocycle. The Sridharan envelop-
ing algebra U f (g) is a PBW-deformation of the polynomial algebra k[x1, . . . , xn] where n = dimg

(cf. [24,3,21]). Conversely, a PBW-deformation of a polynomial algebra is exactly a Sridharan en-
veloping algebra (cf. [24,19]). It is shown in [3, Theorem 3.6] that if a PBW-deformation of a 3-
dimensional graded CY algebra is defined by a potential, then the deformed algebra is also CY of
dimension 3. Whether the converse is true or not is not shown in [3]. However, a CY Sridharan en-
veloping algebra U f (g) of a 3-dimensional Lie algebra is always defined by a potential. In fact, all
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3-dimensional Lie algebras whose Sridharan enveloping algebras are CY are listed in Theorem 5.5.
It is easy to check that the defining relations of these algebras satisfy the condition in [3, Theo-
rem 3.2]. Hence any 3-dimensional CY Sridharan enveloping algebra A is defined by a potential. That
is; A ∼= k〈x, y, z〉/( ∂Φ

∂x
, ∂Φ

∂y
, ∂Φ

∂z
), where Φ ∈ k〈x, y, z〉/[k〈x, y, z〉,k〈x, y, z〉] is a potential.

In fact, we can write down the potentials corresponding to the Sridharan enveloping algebras of
the Lie algebras in Theorem 5.5 respectively:

(1) Φ = xyz − yxz − 1
2 z2 − 2xy;

(2) Φ = xyz − yxz − yz;
(3) Φ = xyz − yxz − 1

2 z2;
(4) Φ = xyz − yxz;
(5) Φ = xyz − yxz − yz − x;
(6) Φ = xyz − yxz − 1

2 z2 − y;
(7) Φ = xyz − yxz − z.

Note that the potential in the case (1) of the list is proportional to the Casimir element of the
Lie algebra sl(2,k) (we thank the referee point out it to us). So, a PBW-deformation A of the poly-
nomial algebra k[x, y, z] is CY if and only if A is defined by a potential. This phenomenon does not
occur accidentally. Travis Schedler shows in [23] that any 3-dimensional CY PBW-deformation of a
3-dimensional graded CY algebra (associated to a finite quiver) must be defined by a potential. Com-
bining with the results of [3], we then obtain that a PBW-deformation A of a 3-dimensional graded
CY algebra (associated to a finite quiver) is CY of dimension 3 if and only if A is defined by a potential.
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