733 research outputs found

    Facilitating Mechanical Design with Augmented Reality

    Get PDF
    By enhancing a real scene with computer generated objects, Augmented Reality (AR), has proven itself as a valuable Human-Computer Interface (HCI) in numerous application areas such as medical, military, entertainment and manufacturing. It enables higher performance of on-site tasks with seamless presentation of up-to-date, task-related information to the users during the operation. AR has potentials in design because the current interface provided by Computer-aided Design (CAD) packages is less intuitive and reports show that the presence of physical objects help design thinking and communication. This research explores the use of AR to improve the efficiency of a design process, specifically in mechanical design.Singapore-MIT Alliance (SMA

    Score Fusion by Maximizing the Area under the ROC Curve

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-02172-5_61Information fusion is currently a very active research topic aimed at improving the performance of biometric systems. This paper proposes a novel method for optimizing the parameters of a score fusion model based on maximizing an index related to the Area Under the ROC Curve. This approach has the convenience that the fusion parameters are learned without having to specify the client and impostor priors or the costs for the different errors. Empirical results on several datasets show the effectiveness of the proposed approach.Work supported by the Spanish projects DPI2006-15542-C04 and TIN2008-04571 and the Generalitat Valenciana - Consellería d’Educació under an FPI scholarship.Villegas Santamaría, M.; Paredes Palacios, R. (2009). Score Fusion by Maximizing the Area under the ROC Curve. En Pattern Recognition and Image Analysis: 4th Iberian Conference, IbPRIA 2009 Póvoa de Varzim, Portugal, June 10-12, 2009 Proceedings. Springer Verlag (Germany). 473-480. https://doi.org/10.1007/978-3-642-02172-5_61S473480Toh, K.A., Kim, J., Lee, S.: Biometric scores fusion based on total error rate minimization. Pattern Recognition 41(3), 1066–1082 (2008)Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recognition 38(12), 2270–2285 (2005)Gutschoven, B., Verlinde, P.: Multi-modal identity verification using support vector machines (svm). In: Proceedings of the Third International Conference on Information Fusion. FUSION 2000, vol. 2, pp. THB3/3–THB3/8 (July 2000)Ma, Y., Cukic, B., Singh, H.: A classification approach to multi-biometric score fusion. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 484–493. Springer, Heidelberg (2005)Maurer, D.E., Baker, J.P.: Fusing multimodal biometrics with quality estimates via a bayesian belief network. Pattern Recogn. 41(3), 821–832 (2008)Ling, C.X., Huang, J., Zhang, H.: Auc: a statistically consistent and more discriminating measure than accuracy. In: Proc. of IJCAI 2003, pp. 519–524 (2003)Yan, L., Dodier, R.H., Mozer, M., Wolniewicz, R.H.: Optimizing classifier performance via an approximation to the wilcoxon-mann-whitney statistic. In: Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003), Washington, DC, USA, pp. 848–855. AAAI Press, Menlo Park (2003)Marrocco, C., Molinara, M., Tortorella, F.: Exploiting auc for optimal linear combinations of dichotomizers. Pattern Recogn. Lett. 27(8), 900–907 (2006)Marrocco, C., Duin, R.P.W., Tortorella, F.: Maximizing the area under the roc curve by pairwise feature combination. Pattern Recogn. 41(6), 1961–1974 (2008)Paredes, R., Vidal, E.: Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization. Pattern Recognition 39(2), 180–188 (2006)Villegas, M., Paredes, R.: Simultaneous learning of a discriminative projection and prototypes for nearest-neighbor classification. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2008, pp. 1–8 (2008)Nandakumar, K., Chen, Y., Dass, S.C., Jain, A.: Likelihood ratio-based biometric score fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 342–347 (2008)Poh, N., Bengio, S.: A score-level fusion benchmark database for biometric authentication. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 1059–1070. Springer, Heidelberg (2005)National Institute of Standards and Technology: NIST Biometric Scores Set - Release 1 (BSSR1) (2004), http://www.itl.nist.gov/iad/894.03/biometricscores/Bengio, S., Mariéthoz, J., Keller, M.: The expected performance curve. In: Proceedings of the Second Workshop on ROC Analysis in ML, pp. 9–16 (2005

    The Magnetic Field Structure of Mercury’s Magnetotail

    Full text link
    In this study, we use the magnetic field data measured by MErcury Surface, Space ENvironment, GEochemistry, and Ranging from 2011 to 2015 to investigate the average magnetic field morphology of Mercury’s magnetotail in the down tail 0–3 RM (RM = 2,440 km, Mercury’s radius). It is found that Mercury has a terrestrial‐like magnetotail; the magnetic field structure beyond 1.5 RM down tail is stretched significantly with typical lobe field 50 nT. A cross‐tail current sheet separating the antiparallel field lines of lobes is present in the equatorial plane. The magnetotail width in north‐south direction is about 5 RM, while the transverse width is about 4 RM. Thus, the magnetotail shows elongation along the north‐south direction. At the cross‐tail current sheet center, the normal component of magnetic field (10–20 nT) is much larger than the cross‐tail component. The lobe‐field‐aligned component of magnetic field over current sheet can be well fitted by Harris sheet model. The curvature radius of field lines at sheet center usually reaches a minimum around midnight (100–200 km) with stronger current density (40–50 nA/m2), while the curvature radius increases toward both flanks (400–600 km) with the decreased current density (about 20 nA/m2). The half‐thickness of current sheet around midnight is about 0.25 RM or 600 km, and the inner edge of current sheet is located at the down tail about 1.5 RM. Our results about the field structure in the near Mercury’s tail show an evident dawn‐dusk asymmetry as that found in the Earth’s magnetotail, but reasons should be different. Possible reasons are discussed.Key PointsThe magnetic field distribution, configuration, and current density in Mercury’s magnetotail are quantitatively addressedMercury’s magnetotail is elongated along the south‐north direction, which is probably due to the effect of the dipole offset or the induction effect of coreThe magnetic structure of tail current sheet shows a clear dawn‐dusk asymmetry with smaller Bz and less flaring field on the dusksidePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142544/1/jgra54041.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142544/2/jgra54041_am.pd

    Process evaluation of a kindergarten-based intervention for obesity prevention in early childhood: the Toybox study Malaysia

    Get PDF
    BackgroundToybox is a kindergarten-based intervention program that targets sedentary behavior, snacking and drinking habits, as well as promoting physical activity in an effort to improve healthy energy balance-related behaviors among children attending kindergartens in Malaysia. The pilot of this program was conducted as a randomized controlled trial (RCT) involving 837 children from 22 intervention kindergartens and 26 control kindergartens respectively. This paper outlines the process evaluation of this intervention.MethodsWe assessed five process indicators: recruitment, retention, dosage, fidelity, and satisfaction for the Toybox program. Data collection was conducted via teachers’ monthly logbooks, post-intervention feedback through questionnaires, and focus group discussions (FGD) with teachers, parents, and children. Data were analyzed using quantitative and qualitative data analysis methods.ResultsA total of 1072 children were invited. Out of the 1001 children whose parents consented to join, only 837 completed the program (Retention rate: 88.4%). As high as 91% of the 44 teachers and their assistants engaged positively in one or more of the process evaluation data collection methods. In terms of dosage and fidelity, 76% of parents had received newsletters, tip cards, and posters at the appropriate times. All teachers and their assistants felt satisfied with the intervention program. However, they also mentioned some barriers to its implementation, including the lack of suitable indoor environments to conduct activities and the need to make kangaroo stories more interesting to captivate the children’s attention. As for parents, 88% of them were satisfied with the family-based activities and enjoyed them. They also felt that the materials provided were easy to understand and managed to improve their knowledge. Lastly, the children showed positive behaviors in consuming more water, fruits, and vegetables.ConclusionsThe Toybox program was deemed acceptable and feasible to implement by the parents and teachers. However, several factors need to be improved before it can be expanded and embedded as a routine practice across Malaysia

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains reports on eleven research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)Joint Services Electronics Program (Contract DAAL03-86-K-0002)National Science Foundation (Grant ECS82-03390)National Science Foundation (Grant ECS85-04381)Schlumberger-Doll Research CenterNational Aeronautics and Space Administration (Contract NAG 5-141)National Aeronautics and Space Administration (Contract NAS 5-26861)National Aeronautics and Space Administration (Contract NAG 5-270)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)National Aeronautics and Space Administration (Contract NAG 5-725)International Business Machines, Inc.Lincoln Laborator

    Quantum teleportation using active feed-forward between two Canary Islands

    Full text link
    Quantum teleportation [1] is a quintessential prerequisite of many quantum information processing protocols [2-4]. By using quantum teleportation, one can circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum states to a party whose location is even unknown over arbitrary distances. Ever since the first experimental demonstrations of quantum teleportation of independent qubits [6] and of squeezed states [7], researchers have progressively extended the communication distance in teleportation, usually without active feed-forward of the classical Bell-state measurement result which is an essential ingredient in future applications such as communication between quantum computers. Here we report the first long-distance quantum teleportation experiment with active feed-forward in real time. The experiment employed two optical links, quantum and classical, over 143 km free space between the two Canary Islands of La Palma and Tenerife. To achieve this, the experiment had to employ novel techniques such as a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors, and entanglement-assisted clock synchronization. The average teleported state fidelity was well beyond the classical limit of 2/3. Furthermore, we confirmed the quality of the quantum teleportation procedure (without feed-forward) by complete quantum process tomography. Our experiment confirms the maturity and applicability of the involved technologies in real-world scenarios, and is a milestone towards future satellite-based quantum teleportation

    The Smartphone Brain Scanner: A Portable Real-Time Neuroimaging System

    Get PDF
    Combining low cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. We present a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction. The system - Smartphone Brain Scanner - combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully mobile system for real-time 3D EEG imaging. We discuss the benefits and challenges of a fully portable system, including technical limitations as well as real-time reconstruction of 3D images of brain activity. We present examples of the brain activity captured in a simple experiment involving imagined finger tapping, showing that the acquired signal in a relevant brain region is similar to that obtained with standard EEG lab equipment. Although the quality of the signal in a mobile solution using a off-the-shelf consumer neuroheadset is lower compared to that obtained using high density standard EEG equipment, we propose that mobile application development may offset the disadvantages and provide completely new opportunities for neuroimaging in natural settings
    • …
    corecore