39 research outputs found

    Characteristics of pncA mutations in multidrug-resistant tuberculosis in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyrazinamide (PZA) is an important first-line drug in multidrug-resistant tuberculosis (MDRTB) treatment. However, the unreliable results obtained from traditional susceptibility testing limits its usefulness in clinical settings. The detection of <it>pncA </it>gene mutations is a potential surrogate of PZA susceptibility testing, especially in MDRTB isolates. The impact of genotypes of <it>M. tuberculosis </it>in <it>pncA </it>gene mutations also remains to be clarified.</p> <p>Methods</p> <p>MDRTB isolates were collected from six hospitals in Taiwan from January 2007 to December 2009. <it>pncA </it>gene sequencing, pyrazinamidase activity testing, and spoligotyping were performed on all of the isolates. PZA susceptibility was determined by the BACTEC MGIT 960 PZA method. The sensitivity and specificity of <it>pncA </it>gene analysis were estimated based on the results of PZA susceptibility testing.</p> <p>Results</p> <p>A total of 66 MDRTB isolates, including 37 Beijing and 29 non-Beijing strains, were included for analysis. Among these isolates, 36 (54.5%) were PZA-resistant and 30 (45.5%) were PZA-susceptible. The PZA-resistant isolates were more likely to have concomitant resistance to ethambutol and streptomycin. Thirty-seven mutation types out of 30 isolates were identified in the <it>pncA </it>gene, and most of them were point mutations. The sensitivities of <it>pncA </it>gene sequencing for PZA susceptibility in overall isolates, Beijing and non-Beijing strains were 80.6%, 76.2%, and 86.7% respectively, and the specificities were 96.7%, 93.8%, and 100% respectively.</p> <p>Conclusions</p> <p>More than half of the MDRTB isolates in this study are PZA-resistant. Analysis of <it>pncA </it>gene mutations helped to identify PZA-susceptible MDRTB isolates, especially in non-Beijing strains.</p

    Contribution of Efflux to the Emergence of Isoniazid and Multidrug Resistance in Mycobacterium tuberculosis

    Get PDF
    Multidrug resistant (MDR) tuberculosis is caused by Mycobacterium tuberculosis resistant to isoniazid and rifampicin, the two most effective drugs used in tuberculosis therapy. Here, we investigated the mechanism by which resistance towards isoniazid develops and how overexpression of efflux pumps favors accumulation of mutations in isoniazid targets, thus establishing a MDR phenotype. The study was based on the in vitro induction of an isoniazid resistant phenotype by prolonged serial exposure of M. tuberculosis strains to the critical concentration of isoniazid employed for determination of drug susceptibility testing in clinical isolates. Results show that susceptible and rifampicin monoresistant strains exposed to this concentration become resistant to isoniazid after three weeks; and that resistance observed for the majority of these strains could be reduced by means of efflux pumps inhibitors. RT-qPCR assessment of efflux pump genes expression showed overexpression of all tested genes. Enhanced real-time efflux of ethidium bromide, a common efflux pump substrate, was also observed, showing a clear relation between overexpression of the genes and increased efflux pump function. Further exposure to isoniazid resulted in the selection and stabilization of spontaneous mutations and deletions in the katG gene along with sustained increased efflux activity. Together, results demonstrate the relevance of efflux pumps as one of the factors of isoniazid resistance in M. tuberculosis. These results support the hypothesis that activity of efflux pumps allows the maintenance of an isoniazid resistant population in a sub-optimally treated patient from which isoniazid genetically resistant mutants emerge. Therefore, the use of inhibitors of efflux should be considered in the development of new therapeutic strategies for preventing the emergence of MDR-TB during treatment

    Perovskite-type oxides as susceptor materials in dielectric heating

    Get PDF
    Dielectric properties of La1-xCexMnO3 perovskites are investigated in order to assess the heating behaviour in the wider context of the use of perovskite coatings in microwave assisted soot filter regeneration. Dielectric permittivities in the radio and microwave region for these perovskites were determined at room temperature. The dielectric constant and dielectric loss are related to ionic conduction at low frequencies, while at microwave frequencies storage and loss mainly proceed through reorientation of molecular dipoles. The dielectric constant rises for a higher degree of La substitution by Ce, which is explained by an increase of the number of cation/oxygen vacancies. Concurrently the mean perovskite crystallite size decreases, which is possibly related to defect formation. The dielectric constant declines for x >= 0.3, along with the formation of a separate, low dielectric permittivity CeO2 phase. The La-Ce-Mn perovskites are further shown to exhibit a high thermal stability during repeated heating/cooling, cycles
    corecore