102 research outputs found

    MicroRNA-211 Expression Promotes Colorectal Cancer Cell Growth In Vitro and In Vivo by Targeting Tumor Suppressor CHD5

    Get PDF
    Background: Chromodomain-helicase-DNA-binding protein 5 (CHD5) is a newly identified tumor suppressor that is frequently downregulated in a variety of human cancers. Our previous work revealed that the low expression of CHD5 in colorectal cancer is correlated with CHD5 promoter CpG island hypermethylation. In this study, we investigated the effect of microRNA-211 (miR-211)-regulated CHD5 expression on colorectal tumorigenesis. Methodology/Principal Findings: miR-211 was predicted to target CHD5 by TargetScan software analysis. A stably expressing exogenous miR-211 colorectal cancer cell line (HCT-116 miR-211) was generated using lentiviral transduction and used as a model for in vitro and in vivo studies. The expression level of miR-211 in HCT-116 miR-211 cells was upregulated by 16-fold compared to vector control cells (HCT-116 vector). Exogenous miR-211 directly binds to the 39-untranslated region (39-UTR) of CHD5 mRNA, resulting in a 50 % decrease in CHD5 protein level in HCT-116 miR-211 cells. The levels of cell proliferation, tumor growth, and cell migration of HCT-116 miR-211 cells were significantly higher than HCT-116 vector cells under both in vitro and in vivo conditions, as determined using the methods of MTT, colony formation, flow cytometry, scratch assay, and tumor xenografts, respectively. In addition, we found that enforced expression of miR-211 in HCT-116 cells was able to alter p53 pathway-associated regulatory proteins, such as MDM2, Bcl-2, Bcl-xL, and Bax. Conclusion/Significance: Our results demonstrate that CHD5 is a direct target of miR-211 regulation. Enforced expression o

    Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.

    Get PDF
    We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease

    Biased Gene Fractionation and Dominant Gene Expression among the Subgenomes of Brassica rapa

    Get PDF
    Polyploidization, both ancient and recent, is frequent among plants. A ā€œtwo-step theory" was proposed to explain the meso-triplication of the Brassica ā€œA" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B. rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest that ā€œtwo-step" genome triplication and differential subgenome methylation played important roles in the genome evolution of B. rapa

    Identification and Differential Expression of MicroRNAs during Metamorphosis of the Japanese Flounder (Paralichthys olivaceus)

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs of 20-25 nucleotides that play a key role in diverse biological processes. Japanese flounder undergo dramatic metamorphosis in their early development. The metamorphosis is characterized by morphological transformation from a bilaterally symmetrical to an asymmetrical body shape concomitant with extensive morphological and physiological remodeling of organs. So far, only a few miRNAs have been identified in fish and there are very few reports about the Japanese flounder miRNA. METHODOLOGY/PRINCIPAL FINDINGS: Solexa sequencing technology was used to perform high throughput sequencing of the small RNA library from the metamorphic period of Japanese flounder. Subsequently, aligning these sequencing data with metazoan known miRNAs, we characterized 140 conserved miRNAs and 57 miRNA: miRNA* pairs from the small RNA library. Among these 57 miRNA: miRNA* pairs, twenty flounder miRNA precursors were amplified from genomic DNA. We also demonstrated evolutionary conservation of Japanese flounder miRNAs and miRNA* in the animal evolution process. Using miRNA microarrays, we identified 66 differentially expressed miRNAs at two metamorphic stages (17 and 29 days post hatching) of Japanese flounder. The results show that miRNAs might play a key role in regulating gene expression during Japanese flounder metamorphosis. CONCLUSIONS/SIGNIFICANCE: We identified a large number of miRNAs during flounder metamorphosis, some of which are differentially expressed at two different metamorphic stages. The study provides an opportunity for further understanding of miRNA function in the regulation of flounder metamorphosis and gives us clues for further studies of the mechanisms of metamorphosis in Japanese flounder

    A sequence-based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Brassica rapa </it>is an economically important crop and a model plant for studies concerning polyploidization and the evolution of extreme morphology. The multinational <it>B. rapa </it>Genome Sequencing Project (BrGSP) was launched in 2003. In 2008, next generation sequencing technology was used to sequence the <it>B. rapa </it>genome. Several maps concerning <it>B. rapa </it>pseudochromosome assembly have been published but their coverage of the genome is incomplete, anchoring approximately 73.6% of the scaffolds on to chromosomes. Therefore, a new genetic map to aid pseudochromosome assembly is required.</p> <p>Results</p> <p>This study concerns the construction of a reference genetic linkage map for <it>Brassica rapa</it>, forming the backbone for anchoring sequence scaffolds of the <it>B. rapa </it>genome resulting from recent sequencing efforts. One hundred and nineteen doubled haploid (DH) lines derived from microspore cultures of an F1 cross between a Chinese cabbage (<it>B. rapa </it>ssp. <it>pekinensis</it>) DH line (Z16) and a rapid cycling inbred line (L144) were used to construct the linkage map. PCR-based insertion/deletion (InDel) markers were developed by re-sequencing the two parental lines. The map comprises a total of 507 markers including 415 InDels and 92 SSRs. Alignment and orientation using SSR markers in common with existing <it>B. rapa </it>linkage maps allowed ten linkage groups to be identified, designated A01-A10. The total length of the linkage map was 1234.2 cM, with an average distance of 2.43 cM between adjacent marker loci. The lengths of linkage groups ranged from 71.5 cM to 188.5 cM for A08 and A09, respectively. Using the developed linkage map, 152 scaffolds were anchored on to the chromosomes, encompassing more than 82.9% of the <it>B. rapa </it>genome. Taken together with the previously available linkage maps, 183 scaffolds were anchored on to the chromosomes and the total coverage of the genome was 88.9%.</p> <p>Conclusions</p> <p>The development of this linkage map is vital for the integration of genome sequences and genetic information, and provides a useful resource for the international <it>Brassica </it>research community.</p

    Systems Biology Approach Predicts Antibody Signature Associated with Brucella melitensis Infection in Humans

    Get PDF
    A complete understanding of the factors that determine selection of antigens recognized by the humoral immune response following infectious agent challenge is lacking. Here we illustrate a systems biology approach to identify the antibody signature associated with Brucella melitensis (Bm) infection in humans and predict proteomic features of serodiagnostic antigens. By taking advantage of a full proteome microarray expressing previously cloned 1406 and newly cloned 1640 Bm genes, we were able to identify 122 immunodominant antigens and 33 serodiagnostic antigens. The reactive antigens were then classified according to annotated functional features (COGs), computationally predicted features (e.g., subcellular localization, physical properties), and protein expression estimated by mass spectrometry (MS). Enrichment analyses indicated that membrane association and secretion were significant enriching features of the reactive antigens, as were proteins predicted to have a signal peptide, a single transmembrane domain, and outer membrane or periplasmic location. These features accounted for 67% of the serodiagnostic antigens. An overlay of the seroreactive antigen set with proteomic data sets generated by MS identified an additional 24%, suggesting that protein expression in bacteria is an additional determinant in the induction of Brucella-specific antibodies. This analysis indicates that one-third of the proteome contains enriching features that account for 91% of the antigens recognized, and after B. melitensis infection the immune system develops significant antibody titers against 10% of the proteins with these enriching features. This systems biology approach provides an empirical basis for understanding the breadth and specificity of the immune response to B. melitensis and a new framework for comparing the humoral responses against other microorganisms
    • ā€¦
    corecore