24 research outputs found

    Pragmatic Language and School Related Linguistic Abilities in Siblings of Children with Autism

    Get PDF
    Siblings of probands with autism spectrum disorders are at higher risk for developing the broad autism phenotype (BAP). We compared the linguistic abilities (i.e., pragmatic language, school achievements, and underling reading processes) of 35 school-age siblings of children with autism (SIBS-A) to those of 42 siblings of children with typical development. Results indicated lower pragmatic abilities in a subgroup of SIBS-A identified with BAP related difficulties (SIBS-A-BAP) whereas school achievements and reading processes were intact. Furthermore, among SIBS-A-BAP, significant negative correlations emerged between the severity scores on the Autism Diagnostic Observation Schedule and full and verbal IQ scores. These results are discussed in the context of the developmental trajectories of SIBS-A and in relation to the BAP

    Rediscovering the value of families for psychiatric genetics research

    Get PDF
    As it is likely that both common and rare genetic variation are important for complex disease risk, studies that examine the full range of the allelic frequency distribution should be utilized to dissect the genetic influences on mental illness. The rate limiting factor for inferring an association between a variant and a phenotype is inevitably the total number of copies of the minor allele captured in the studied sample. For rare variation, with minor allele frequencies of 0.5% or less, very large samples of unrelated individuals are necessary to unambiguously associate a locus with an illness. Unfortunately, such large samples are often cost prohibitive. However, by using alternative analytic strategies and studying related individuals, particularly those from large multiplex families, it is possible to reduce the required sample size while maintaining statistical power. We contend that using whole genome sequence (WGS) in extended pedigrees provides a cost-effective strategy for psychiatric gene mapping that complements common variant approaches and WGS in unrelated individuals. This was our impetus for forming the “Pedigree-Based Whole Genome Sequencing of Affective and Psychotic Disorders” consortium. In this review, we provide a rationale for the use of WGS with pedigrees in modern psychiatric genetics research. We begin with a focused review of the current literature, followed by a short history of family-based research in psychiatry. Next, we describe several advantages of pedigrees for WGS research, including power estimates, methods for studying the environment, and endophenotypes. We conclude with a brief description of our consortium and its goals.This research was supported by National Institute of Mental Health grants U01 MH105630 (DCG), U01 MH105634 (REG), U01 MH105632 (JB), R01 MH078143 (DCG), R01 MH083824 (DCG & JB), R01 MH078111 (JB), R01 MH061622 (LA), R01 MH042191 (REG), and R01 MH063480 (VLN).UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí

    The Unseen Hand:AI-Based Prescribing Decision Support Tools and the Evaluation of Drug Safety and Effectiveness

    Get PDF
    The use of artificial intelligence (AI)-based tools to guide prescribing decisions is full of promise and may enhance patient outcomes. These tools can perform actions such as choosing the ‘safest’ medication, choosing between competing medications, promoting de-prescribing or even predicting non-adherence. These tools can exist in a variety of formats; for example, they may be directly integrated into electronic medical records or they may exist in a stand-alone website accessible by a web browser. One potential impact of these tools is that they could manipulate our understanding of the benefit-risk of medicines in the real world. Currently, the benefit risk of approved medications is assessed according to carefully planned agreements covering spontaneous reporting systems and planned surveillance studies. But AI-based tools may limit or even block prescription to high-risk patients or prevent off-label use. The uptake and temporal availability of these tools may be uneven across healthcare systems and geographies, creating artefacts in data that are difficult to account for. It is also hard to estimate the ‘true impact’ that a tool had on a prescribing decision. International borders may also be highly porous to these tools, especially in cases where tools are available over the web. These tools already exist, and their use is likely to increase in the coming years. How they can be accounted for in benefit-risk decisions is yet to be seen.</p

    The Unseen Hand: AI-Based Prescribing Decision Support Tools and the Evaluation of Drug Safety and Effectiveness [opinion].

    No full text
    The use of artificial intelligence (AI)-based tools to guide prescribing decisions is full of promise and may enhance patient outcomes. These tools can perform actions such as choosing the 'safest' medication, choosing between competing medications, promoting de-prescribing or even predicting non-adherence. These tools can exist in a variety of formats; for example, they may be directly integrated into electronic medical records or they may exist in a stand-alone website accessible by a web browser. One potential impact of these tools is that they could manipulate our understanding of the benefit-risk of medicines in the real world. Currently, the benefit risk of approved medications is assessed according to carefully planned agreements covering spontaneous reporting systems and planned surveillance studies. But AI-based tools may limit or even block prescription to high-risk patients or prevent off-label use. The uptake and temporal availability of these tools may be uneven across healthcare systems and geographies, creating artefacts in data that are difficult to account for. It is also hard to estimate the 'true impact' that a tool had on a prescribing decision. International borders may also be highly porous to these tools, especially in cases where tools are available over the web. These tools already exist, and their use is likely to increase in the coming years. How they can be accounted for in benefit-risk decisions is yet to be seen

    Standardization in Quantitative Imaging: A Multicenter Comparison of Radiomic Features from Different Software Packages on Digital Reference Objects and Patient Data Sets

    No full text
    Radiomic features are being increasingly studied for clinical applications. We aimed to assess the agreement among radiomic features when computed by several groups by using different software packages under very tightly controlled conditions, which included standardized feature definitions and common image data sets. Ten sites (9 from the NCI\u27s Quantitative Imaging Network] positron emission tomography–computed tomography working group plus one site from outside that group) participated in this project. Nine common quantitative imaging features were selected for comparison including features that describe morphology, intensity, shape, and texture. The common image data sets were: three 3D digital reference objects (DROs) and 10 patient image scans from the Lung Image Database Consortium data set using a specific lesion in each scan. Each object (DRO or lesion) was accompanied by an already-defined volume of interest, from which the features were calculated. Feature values for each object (DRO or lesion) were reported. The coefficient of variation (CV), expressed as a percentage, was calculated across software packages for each feature on each object. Thirteen sets of results were obtained for the DROs and patient data sets. Five of the 9 features showed excellent agreement with CV &lt; 1%; 1 feature had moderate agreement (CV &lt; 10%), and 3 features had larger variations (CV ≥ 10%) even after attempts at harmonization of feature calculations. This work highlights the value of feature definition standardization as well as the need to further clarify definitions for some features

    Development of an Objective Autism Risk Index Using Remote Eye Tracking

    No full text
    OBJECTIVE: Abnormal eye gaze is a hallmark characteristic of autism spectrum disorder (ASD), and numerous studies have identified abnormal attention patterns in ASD. The primary aim of the present study was to create an objective, eye tracking-based autism risk index. METHOD: In initial and replication studies, children were recruited after referral for comprehensive multidisciplinary evaluation of ASD and subsequently grouped by clinical consensus diagnosis (ASD n=25/15, non-ASD n=20/19 for initial/replication samples). Remote eye tracking was blinded to diagnosis and included multiple stimuli. Dwell times were recorded to each a priori-defined region-of-interest (ROI) and averaged across ROIs to create an autism risk index. Receiver operating characteristic curve analyses examined classification accuracy. Correlations with clinical measures evaluated whether the autism risk index was associated with autism symptom severity independent of language ability. RESULTS: In both samples, the autism risk index had high diagnostic accuracy (area under the curve [AUC]=.91 and .85, 95%CIs=.81–.98 and .71–.96), was strongly associated with Autism Diagnostic Observation Schedule–Second Edition (ADOS-2) severity scores (r=.58 and .59, p<.001), and not significantly correlated with language ability (r≤|−.28|, p>.095). CONCLUSION: The autism risk index may be a useful quantitative and objective measure of risk for autism in at-risk settings. Future research in larger samples is needed to cross-validate these findings. If a validated scale for clinical use, this measure could inform clinical judgment regarding ASD diagnosis and track symptom improvements
    corecore