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Abstract
The use of artificial intelligence (AI)-based tools to guide prescribing decisions is full of promise and may enhance patient 
outcomes. These tools can perform actions such as choosing the ‘safest’ medication, choosing between competing medica-
tions, promoting de-prescribing or even predicting non-adherence. These tools can exist in a variety of formats; for example, 
they may be directly integrated into electronic medical records or they may exist in a stand-alone website accessible by 
a web browser. One potential impact of these tools is that they could manipulate our understanding of the benefit-risk of 
medicines in the real world. Currently, the benefit risk of approved medications is assessed according to carefully planned 
agreements covering spontaneous reporting systems and planned surveillance studies. But AI-based tools may limit or even 
block prescription to high-risk patients or prevent off-label use. The uptake and temporal availability of these tools may be 
uneven across healthcare systems and geographies, creating artefacts in data that are difficult to account for. It is also hard to 
estimate the ‘true impact’ that a tool had on a prescribing decision. International borders may also be highly porous to these 
tools, especially in cases where tools are available over the web. These tools already exist, and their use is likely to increase 
in the coming years. How they can be accounted for in benefit-risk decisions is yet to be seen.

1  Introduction: Artificial Intelligence 
(AI)‑Based Tools—A New Aid to Prescriber 
Decision Making

Prescribing the most safe and effective medication to a 
patient is a highly complex task, and clinical decision 
support system (CDSS) tools can assist in this activity. 
CDSS tools based on artificial intelligence (AI) may help 
inform prescription choices using complex combinations 
of patient attributes. This article focuses on the impact that 
these AI-based tools may have on established approaches 
for monitoring medicine safety and effectiveness in the 
real world. This article is a summary of three virtual work-
shops held from January to February 2023 with a focus 
on how the field of pharmacoepidemiology could react 
to the introduction of these tools. The workshop series 
was called ‘Actionable AI for treatment’ and prospective 
participants were invited to attend via email. All work-
shop participants also later contributed to this work as 
authors, representing academic, pharmaceutical industry 

and technology company organisations. In advance of the 
workshops, a list of proposed subtopics was generated and 
ranked in importance by poll, and each workshop followed 
a structured agenda. The first workshop focused on sources 
of bias and unfairness in treatment predictions, the second 
on the regulation and monitoring of AI-based tools that 
assist treatment selection, and the third on the impact that 
AI-based CDSS tools have on medication use and evalua-
tion of drug benefit-risk. The minutes from each workshop 
were circulated and edited, and the key themes from the 
discussion were used to construct this manuscript.

2  The Current State of Play of AI‑Based 
Prescribing Support Tools

A great deal of valuable medical information is available 
within the patient records, including previous diagnoses, 
procedures, genetic testing, and medication use. These 
data can be utilised by AI-based tools to help prescrib-
ers select the right medication for an individual patient 
[1]. The use of these tools in clinical practice is relatively Extended author information available on the last page of the article
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Key Points 

Artificial intelligence-based clinical decision support 
tools have the ability to promote better patient outcomes 
by making use of patient-level data. However, these 
sophisticated tools may alter our understanding of medi-
cine benefit-risk in the real world.

The differential uptake of these tools may lead to 'sur-
veillance artefacts' in real-world data, whereby the safety 
of a medicine appears worse or better than we would 
expect it to due to the hidden influence of these tools.

These tools may reduce or restrict medicine access for 
some groups of patients if off-label use is prohibited, 
which could disadvantage pregnant people, infants or the 
elderly.

It may be challenging to demonstrate that these tools are 
having an impact on prescribing during discussions with 
regulators.

opaque—anecdotal evidence shows that many of these 
tools fall outside of official medical device reporting chan-
nels, are restricted to single hospitals [2, 3], or, alterna-
tively, are used for short periods within research studies 
[4].

The applications of these tools vary widely across 
the prescribing lifecycle [4–6]. Some tools aim to pre-
vent prescription errors, such as MedAware, which uses 
AI to detect and flag potential errors in prescription [7]. 
Other tools focus on improving safety outcomes, such 
as the CMM-Wrap program used in high-risk Medicaid 
patients to predict the likelihood of adverse events (AEs) 
based on proposed treatment plans [8]. Some tools focus 
on drug effectiveness outcomes, such as the Antidepres-
sant Response Prediction Network (ARPNet) tools, which 
predict treatment success in patients with depression [9], 
G-Net, which is able to predict individual patient treat-
ment success under different counterfactual treatment 
plans [10]), or IBM Watson and Tempus’s xT Platform 
for oncology treatment recommendations [11, 12]. Other 
tools may also use patient-level data to predict potential 
issues with addiction [13] or are able to predict non-adher-
ence by using real-time measures of dosing [14]. Some 
tools will be used to enhance prescriber decision making 
during medication reviews, such as DynAIRx, a tool that 
visualises the risk of future hospital admissions accord-
ing to different proposed treatment plans [15]. Other tools 
may be used to support tapering or de-prescribing, such 
as those seen in the describing of opioids [16, 17]. The 

clinical applications of these tools are numerous and are 
likely to expand as more AI developers are able to demon-
strate increased return on investment or improved patient 
outcomes [2].

3  Integration of AI Prescribing Tools 
into Clinical Practice May Alter Prescribing 
Trends

The level of integration of these AI-based tools into 
standard clinical practice varies greatly. Some tools will 
be directly integrated into the Electronic Medical Record 
(EMR) system itself, while others will be available through 
external ‘web-checker’ browser-based tools, which oper-
ate on abstracted patient data. The tools may also differ 
in their impact and intrusiveness; some tools may either 
prevent prescription entirely (hard-stop alerts), or simply 
act as a checkpoint or warning flag in the prescribing pro-
cess (e.g., requiring an additional sign-off for prescription) 
[18]. The regulation of these tools also varies according to 
the strength and specificity of the recommendations made. 
Tools that provide explicit treatment guidance would 
be required to follow the software as a medical device 
(SaMD) US FDA approval pathway. However, many AI-
based tools may fall outside this rigorous framework, 
and some are considered non-device CDS by the FDA. 
The dividing line between SaMD eligible and ineligible 
tools remains highly contentious, and updated guidance 
was made available by the FDA in 2022 [19, 20].

4  Could these Tools Impact the Benefit‑Risk 
Assessments of Medicines in the Real 
World?

The licencing and approval of medications is a complex 
and highly regulated process. After approval, marketing 
authorisation (MA) holders in the US and EU will imple-
ment some form of risk-based monitoring of real-world 
safety and effectiveness through a Risk Management Plan 
(RMP). These carefully crafted agreements monitor the 
safety and effectiveness of a medication in the real world 
through a range of predetermined post-authorisation 
safety studies (such as enhanced surveillance studies or 
drug utilisation studies). The RMP also contains any spe-
cific risk evaluation and mitigation (REMs) procedures 
deemed necessary to protect patients, such as educational 
campaigns or the restriction of prescription within certain 
groups (e.g., pregnant people). The question considered 
here is whether these benefit-risk monitoring activities 
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will be impacted by the use of these AI-based prescribing 
tools. Depending on the quality of these tools, a medica-
tion could either be prescribed correctly more often, pre-
scribed inappropriately more often, prescribed in a biased 
way, or simply not prescribed at all. The MA holder has 
little control over which AI-based tools will be paired with 
their medication, and it is unlikely that MA holders will be 
aware where and when these tools are being used. Many 
hospitals and insurance companies do not disclose that 
they are using these tools or fail to release information 
on the algorithms and data used. It could also mean that 
traditional approaches used in REMS may be less effective 
(e.g., prescriber behaviour change campaigns).

5  AI‑Based Clinical Decision Support 
System Prescribing Tools May 
Enhance the Apparent Safety Profiles 
of Medications

The reporting rate of suspected AEs may be affected by the 
use of AI-based tools. For example, after the MA of a drug, 
if a drug–drug interaction (DDI) checker is used to influ-
ence prescription, then this tool may increase the apparent 
safety of the medicine. However, if this tool were then to be 
discontinued or unavailable, then this could result in a sud-
den spike in DDIs, negatively impacting the safety profile. 
Thus, the presence or absence of the tool in the prescription 
decision process could influence the observable risk profile 
of the drug. Furthermore, as any unexpected AEs are rou-
tinely investigated by the MA holder and regulators as part 
of standard safety signal detection processes, it can be chal-
lenging to go back and fully understand why an AI-based 
recommendation was made (i.e., what benefit-risk evalua-
tion did the tool logically make?). It can also be hard to 
determine whether the AI-based tool would make the same 
decision next time and whether any corrective action should 
be taken.

6  Like Humans, AI‑Based Tools are 
Vulnerable to Bias

One important and unintended consequence of these algo-
rithmic tools is that they may introduce bias or unfairness 
into prescribing decisions. Prescription is both a social and 
a medical phenomenon, and substantial evidence is already 
available in the literature attesting to the devastating impact 
of tools built on biased and unfair data towards certain eth-
nic groups or special populations [21]. AI-based tools may 
also introduce new patterns of data recording and testing in 
healthcare systems, and this may have downstream impacts 
on the evaluation of medicine safety and effectiveness. For 

example, if an AI-based tool can only function if certain 
laboratory test results are available, then this may result 
in a dramatic increase in these tests being conducted just 
to ensure eligibility for the tool. Efforts have already been 
made to ensure that the minimum information required to 
ensure the functionality of an AI-based tool is routinely 
collected (e.g., the minimum Common Oncology Data Ele-
ments [mCODE] initiative) [22]. However, a tool may fail 
to function if the patient does not have the right attributes or 
access to diagnostic equipment, and this has the potential to 
dramatically reduce minority and underserved group access 
to services. Several techniques exist to measure and mitigate 
bias in AI-based algorithms, but this is only possible if bias 
is proactively looked for in the first place [23].

7  Prescribing ‘Beyond the Label’

AI-based tools may also have the unique ability to guide its 
users to prescribe ‘beyond the label’ by using latent com-
plex logic patterns that are only perceivable to a machine. 
AI-based tools may also make use of information that does 
not currently have an established role in prescription, such 
as wearable device data, which could be of great predictive 
value but is currently not utilised by prescription guidelines. 
AI-based tools are also able to integrate far more historical 
patient information than a prescriber can obtain in a single 
visit, and through the learning process, a model can create its 
own complex proxies and subgroups that are not transparent 
to the tool user. These proxies may just be artefacts (e.g., 
due to a biased dataset), or they may in fact represent valu-
able previously undetected subclasses that can optimise pre-
scription. In theory, an AI-based tool may even encourage 
prescribing in black-box warning situations if its recommen-
dations are not constrained by the label or if new guidance 
is introduced and the tool is not updated (AI-based tools 
cannot usually read or interpret ‘Dear Doctor’ letters). This 
may be particularly problematic if prescribers rely solely 
on the recommendation of the tool (known as ‘automation 
bias’). This interaction between a recommendation tool and 
prescriber behaviour is the subject of ongoing research [24] 
and is also explicitly mentioned as a concern in the FDA’s 
guidance around CDSS [20].

8  Care Providers at All Levels will be 
Impacted by the Advent of AI‑Based Tools

These tools may create challenges for care providers, with 
significant impacts for civil liability and the ‘freedom to 
practice medicine’. If a prescriber prescribes against an AI 
recommendation, then it raises difficult questions around 
accountability and harm. The Hawthorne Effect (whereby 
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a subject behaves differently when they are aware they are 
being observed), may come into play where AI-based tools 
are used, resulting in prescribers acting more cautiously. 
This is particularly the case if a prescribing checkpoint is 
implemented for special populations or off-label use. Off-
label use of medication is very common (especially in 
pregnant persons and children), and the use of AI-based 
tools may invoke prescription hesitancy, leading to reduced 
medication access for these patients and also vastly limiting 
our understanding of real-world safety in these groups. To 
illustrate this, automated algorithms to identify problematic 
opioid prescription patterns in patients have proliferated in 
clinical settings in the US. Despite the wide adoption of 
some of these risk scores that rely on AI for estimation, 
little evidence exists on the real-world performance and 
clinical validation of these measures to correctly identify 
which patients are at high risk for opioid overdose. The 
result has been a significant decrease in opioid medication 
use that may harm patients with chronic pain and disabilities 
needing access to these therapies [25].

Also invoked are challenging ideas around who is 
accountable for maintaining an algorithm and identifying 
safety signals. Serious harms have already occurred due to 
AI-based tools [21], yet outside of the SaMD system, these 
AI-based tools are relatively unmonitored and often poorly 
described [26]. Despite this, such tools are still likely to 
remain attractive to hospitals and insurers due to potential 
cost savings and greatly enhanced clinical outcomes. Fur-
thermore, in resource-limited settings, they may change 
expected patterns of prescribing due to increased confidence 
in prescription being given to non-specialists. This could 
even result in ‘blurring’ of lines of therapy, as confidence 
may be given to skip early lines of therapy that are deemed 
unlikely to work by the tool [27].

9  AI‑Based Tools are Potentially Sensitive 
to Both Population and Location

AI-based tools may also be specific to the location where 
they were created and may not translate well across bor-
ders. Borders could be highly porous to these tools, espe-
cially if these tools can be actively sought out online. Dif-
ferent regions are likely to have different guidelines for 
testing as well as differential access to medicines, and this 
is almost certain to result in geographical differences in 
testing and prescribing behaviour. A recent study indicated 
that 71% of health algorithms used in the US were trained 
on patient data from only three states, and the majority of 
states do not contribute any data at all [28]. In this con-
text, it is also important to consider that the intersection 
between cultural and environmental differences may have 
a significant effect. For example, the behaviours and health 

state of a person of Chinese heritage in the US are likely to 
be different to a person of similar heritage living in China. 
Additionally, Regulators in Asia often require medicine 
MA holders to conduct additional safety and effective-
ness studies using local participant data. However, if a 
safety-based AI tool is unavailable in Asian countries, but 
is still available in the US, then the drug may artificially 
appear to be less safe or have lower effectiveness in cer-
tain ethnic populations. Furthermore, if an AI-based tool 
is able to continuously learn with new data, then regional 
differences may evolve with time, even to the point where 
it would generate different recommendations for the same 
person in different locations.

The uptake of any AI-based tool is unlikely to be evenly 
spread, even within a single country. The uptake of an AI-
based tool may be higher in more digitally mature or ‘inno-
vative’ hospitals. This could appear to show that some drugs 
have a worse safety profile depending on the care setting in 
which they were prescribed. Channelling bias (i.e., whereby 
newly available medicines are prescribed to an unusual or 
unrepresentative set of patients) [29] may also impact the 
performance of continuously learning algorithms, as the 
case mix of exposed patients will evolve slowly over time 
(changing the apparent safety/effectiveness of the medica-
tion as time goes on). Tied into this, algorithms may be sub-
ject to ‘drift’, a process whereby they become outdated as 
a result of changing practices and standards of care [30].

10  The Response of the Pharmaceutical 
Industry

Pharmaceutical companies are likely to regard these tools 
with a mixture of enthusiasm and trepidation. These tools 
may impact pricing (where AI-based tools are used to iden-
tify the cheapest and most effective drug), or even affect 
the lines of therapy used in clinical practice. The opportu-
nity also exists for AI-based tools to be co-developed as a 
companion diagnostic, requiring a positive recommendation 
from the tool for access to the drug. These tools may even 
become associated with the use of value-based agreements, 
with a positive recommendation for the tool required to be 
eligible for the scheme.

A significant challenge will be to address both the plural-
ity of the tools that are created and any potentially conflict-
ing outputs (especially when choosing between medications 
with the same indications). Of course, many of these tools 
will be proprietary or company confidential, which can make 
it hard to evaluate a study design objectively and assess the 
data generated by the associated tool. Furthermore, a lack 
of transparency may also present an opportunity for bad 
actors to increase or decrease the likelihood of prescription 
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of drugs from specific companies. Providing evidence of 
such ethical transgressions would be extremely challenging. 
Certainly, it is possible to point authorities towards these 
tools and to perform drug utilisation studies, but it is difficult 
to show conclusively that the tools had a material impact on 
prescription decisions.

11  Conclusions: The New World of AI 
is Already Here

AI-based tools have the potential to bring both extraordi-
nary benefits and very significant harms to patients, and 
our understanding of real-world safety and effectiveness is 
likely to be influenced by their use. In many cases, these 
sophisticated tools will ensure that patients receive opti-
mally safe and effective medications, identifying the ‘right 
drug’ for the patient. There will however also be instances 
where these tools encourage a wrong or manipulated deci-
sion, leading to harm and artificially poor medication pro-
files. The data and study design elements involved in the 
development of an AI-based tool are the principal con-
tributors to bias, and it is crucial that all parties (academia, 
regulators, competent authorities, tool developers, care 
providers and MA holders) have a clear understanding of 
the processes underpinning the functioning of these tools. 
Reporting initiatives such as DECIDE-AI are paving the 
way for a more standardised way to compare these tools, 
but such guidelines must be widely adopted and used by 
the community in order to provide value [31]. Even armed 
with such knowledge of these tools, the contribution of the 
‘unseen hand of AI’ may provide pharmacoepidemiolo-
gists and safety professionals with both opportunities and 
challenges in the future.
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