284 research outputs found

    Tibial torus and toddler's fractures misdiagnosed as transient synovitis: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The high incidence of transient synovitis in early childhood makes it the first suspected pathology in a limping child. Trauma, which has long been regarded as a causative factor for transient synovitis, may be underestimated in a non-cooperative toddler.</p> <p>After excluding most serious conditions, such as septic arthritis, a speculative diagnosis of transient synovitis can be made, and this can easily mask a subtle musculoskeletal injury.</p> <p>Case presentations</p> <p>We report the cases of three Caucasian patients (two boys, aged 20-months- and three-years-old, and one girl, aged two-years-old), with tibial torus and toddler's fractures which were late-diagnosed due to an initial misdiagnosis of transient synovitis of the hip.</p> <p>Conclusion</p> <p>In a non-cooperative child musculoskeletal trauma can be mistaken as a simple causative factor for transient synovitis of the hip and this can easily prevent further investigation for a possible subtle musculoskeletal injury of the lower extremities.</p> <p>Our experience with the presented cases suggests the need to be more vigilant in the differential diagnosis of transient synovitis in young children.</p

    Sequenceserver: A Modern Graphical User Interface for Custom BLAST Databases

    Get PDF
    Comparing newly obtained and previously known nucleotide and amino-acid sequences underpins modern biological research. BLAST is a well-established tool for such comparisons but is challenging to use on new data sets. We combined a user-centric design philosophy with sustainable software development approaches to create Sequenceserver, a tool for running BLAST and visually inspecting BLAST results for biological interpretation. Sequenceserver uses simple algorithms to prevent potential analysis errors and provides flexible text-based and visual outputs to support researcher productivity. Our software can be rapidly installed for use by individuals or on shared servers

    Volumetric imaging with homogenised excitation and static field at 9.4 T

    Get PDF
    Objectives: To overcome the challenges of B and RF excitation inhomogeneity at ultra-high field MRI, a workflow for volumetric B and flip-angle homogenisation was implemented on a human 9.4 T scanner. Materials and methods: Imaging was performed with a 9.4 T human MR scanner (Siemens Medical Solutions, Erlangen, Germany) using a 16-channel parallel transmission system. B- and B-mapping were done using a dual-echo GRE and transmit phase-encoded DREAM, respectively. B shims and a small-tip-angle-approximation kT-points pulse were calculated with an off-line routine and applied to acquire T- and T -weighted images with MPRAGE and 3D EPI, respectively. Results: Over six in vivo acquisitions, the B-distribution in a region-of-interest defined by a brain mask was reduced down to a full-width-half-maximum of 0.10\ua0±\ua00.01\ua0ppm (39\ua0±\ua02\ua0Hz). Utilising the kT-points pulses, the normalised RMSE of the excitation was decreased from CP-mode’s 30.5\ua0±\ua00.9 to 9.2\ua0±\ua00.7\ua0% with all B \ua0voids eliminated. The SNR inhomogeneities and contrast variations in the T- and T -weighted volumetric images were greatly reduced which led to successful tissue segmentation of the T-weighted image. Conclusion: A 15-minute B- and flip-angle homogenisation workflow, including the B- and B-map acquisitions, was successfully implemented and enabled us to reduce intensity and contrast variations as well as echo-planar image distortions in 9.4 T images

    Collagen fleeces do not improve colonic anastomotic strength but increase bowel obstructions in an experimental rat model

    Get PDF
    To investigate whether a collagen fleece kept in place by fibrin glue might seal off a colorectal anastomosis, provide reinforcement, and subsequently improve anastomotic healing. Wistar rats underwent a 1-cm left-sided colonic resection followed by a 4-suture end-to-end anastomosis. They were then randomly assigned to one of three treatment groups: no additional intervention (control, n = 20), the anastomosis covered with fibrin glue (fibrin glue, n = 20), the anastomosis covered with a collagen fleece, kept in place with fibrin glue (collagen fleece, n = 21). At either 3 or 7 days follow-up, anastomotic bursting pressure was measured and tissue was obtained for histology and collagen content assessment after which animals were sacrificed. Three rats in the control (15%), three in the fibrin glue (15%), and one in the collagen group (4.8%) died due to anastomotic complications (P = 0.497). Anastomotic bursting pressures were not significantly different between groups at 3 and 7 days follow-up (P = 0.659 and P = 0.427, respectively). However, bowel obstructions occurred significantly more often in the collagen group compared to the control group (14/21 vs. 3/20, P = 0.003). Collagen contents were not different between groups, but histology showed a more severe inflammation in the collagen group compared to the other groups at both 3 and 7 days follow-up. A collagen fleece kept in place by fibrin glue does not improve healing of colonic anastomoses in rats. Moreover, this technique induces significantly more bowel obstructions in rats, warranting further study before being translated to a clinical settin

    Understanding bottom-up continuous hydrothermal synthesis of nanoparticles using empirical measurement and computational simulation

    Get PDF
    Continuous hydrothermal synthesis was highlighted in a recent review as an enabling technology for the production of nanoparticles. In recent years, it has been shown to be a suitable reaction medium for the synthesis of a wide range of nanomaterials. Many single and complex nanomaterials such as metals, metal oxides, doped oxides, carbonates, sulfides, hydroxides, phosphates, and metal organic frameworks can be formed using continuous hydrothermal synthesis techniques. This work presents a methodology to characterize continuous hydrothermal flow systems both experimentally and numerically, and to determine the scalability of a counter current supercritical water reactor for the large scale production (>1,000 T·year–1) of nanomaterials. Experiments were performed using a purpose-built continuous flow rig, featuring an injection loop on a metal salt feed line, which allowed the injection of a chromophoric tracer. At the system outlet, the tracer was detected using UV/Vis absorption, which could be used to measure the residence time distribution within the reactor volume. Computational fluid dynamics (CFD) calculations were also conducted using a modeled geometry to represent the experimental apparatus. The performance of the CFD model was tested against experimental data, verifying that the CFD model accurately predicted the nucleation and growth of the nanomaterials inside the reactor

    Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases.

    Get PDF
    Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.Includes MRC, NIHR, Wellcome Trust, H2020 and FP7

    Electrospun PLLA Nanofiber Scaffolds and Their Use in Combination with BMP-2 for Reconstruction of Bone Defects

    Get PDF
    Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus

    Quantifying the Link between Anatomical Connectivity, Gray Matter Volume and Regional Cerebral Blood Flow: An Integrative MRI Study

    Get PDF
    Background In the graph theoretical analysis of anatomical brain connectivity, the white matter connections between regions of the brain are identified and serve as basis for the assessment of regional connectivity profiles, for example, to locate the hubs of the brain. But regions of the brain can be characterised further with respect to their gray matter volume or resting state perfusion. Local anatomical connectivity, gray matter volume and perfusion are traits of each brain region that are likely to be interdependent, however, particular patterns of systematic covariation have not yet been identified. Methodology/Principal Findings We quantified the covariation of these traits by conducting an integrative MRI study on 23 subjects, utilising a combination of Diffusion Tensor Imaging, Arterial Spin Labeling and anatomical imaging. Based on our hypothesis that local connectivity, gray matter volume and perfusion are linked, we correlated these measures and particularly isolated the covariation of connectivity and perfusion by statistically controlling for gray matter volume. We found significant levels of covariation on the group- and regionwise level, particularly in regions of the Default Brain Mode Network. Conclusions/Significance Connectivity and perfusion are systematically linked throughout a number of brain regions, thus we discuss these results as a starting point for further research on the role of homology in the formation of functional connectivity networks and on how structure/function relationships can manifest in the form of such trait interdependency

    BOLD Temporal Dynamics of Rat Superior Colliculus and Lateral Geniculate Nucleus following Short Duration Visual Stimulation

    Get PDF
    Background: The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN's response temporal dynamics following short duration (1 s) visual stimulation. Methodology/Principal Findings: Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC. Conclusions/Significance: The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different. © 2011 Lau et al
    corecore