485 research outputs found
Enhancing Speech Articulation Analysis using a Geometric Transformation of the X-ray Microbeam Dataset
Accurate analysis of speech articulation is crucial for speech analysis.
However, X-Y coordinates of articulators strongly depend on the anatomy of the
speakers and the variability of pellet placements, and existing methods for
mapping anatomical landmarks in the X-ray Microbeam Dataset (XRMB) fail to
capture the entire anatomy of the vocal tract. In this paper, we propose a new
geometric transformation that improves the accuracy of these measurements. Our
transformation maps anatomical landmarks' X-Y coordinates along the midsagittal
plane onto six relative measures: Lip Aperture (LA), Lip Protusion (LP), Tongue
Body Constriction Location (TTCL), Degree (TBCD), Tongue Tip Constriction
Location (TTCL) and Degree (TTCD). Our novel contribution is the extension of
the palate trace towards the inferred anterior pharyngeal line, which improves
measurements of tongue body constriction
Photon induced quantum yield regeneration of cap-exchanged CdSe/CdS quantum rods for ratiometric biosensing and cellular imaging
Full water-dispersion of commercial hydrophobic CdSe/CdS core/shell quantum rods (QRs) was achieved by cap-exchange using a dihydrolipoic acid zwitterion ligand at a low ligand:QR molar ratio (LQMR) of 1000. However, this process almost completely quenched the QR fluorescence, greatly limiting its potential in downstream fluorescence based applications. Fortunately, we found that the QR fluorescence could be recovered by exposure to near ultra-violet to blue light radiation (e.g. 300–450 nm). These “reborn” QRs were found to be compact, bright, and stable, and were resistant to non-specific adsorption, which make them powerful fluorescent probes in broad biomedical applications. We demonstrated their potential in two model applications: first, the QRs were conjugated with His8-tagged small antibody mimetic proteins (also known as Affimers) for the sensitive detection of target proteins via a Förster resonance energy transfer (FRET) readout strategy and second, the QR surface was functionalized with biotins for targeted imaging of cancer cells
Change in hematologic indices over time in pediatric inflammatory bowel disease treated with azathioprine
Azathioprine leads to changes in mean corpuscular volume (MCV) and white blood cell (WBC) indices reflecting efficacy or toxicity. Understanding the interactions between bone marrow stem cells and azathioprine could highlight abnormal response patterns as forerunners for hematologic malig-nancies. This study gives a statistical description of factors influencing the relationship between MCV and WBC in children with inflammatory bowel disease treated with azathioprine. We found that leukopenia preceded macro¬cytosis. Macrocytosis is therefore not a good predictor of leukopenia. Further studies will be necessary to determine the subgroup of patients at increased risk of malignancies based on bone marrow response
Role of tyrosine M210 in the initial charge separation of reaction centers of Rhodobacter sphaeroides
Femtosecond spectroscopy was used in combination with site-directed mutagenesis to study the
influence of tyrosine M210 (YM210) on the primary electron transfer in the reaction center of Rhodobacter
sphaeroides. The exchange of YM210 to phenylalanine caused the time constant of primary electron transfer
to increase from 3.5 f 0.4 ps to 16 f 6 ps while the exchange to leucine increased the time constant even
more to 22 f 8 ps. The results suggest that tyrosine M210 is important for the fast rate of the primary
electron transfer
Development of an Affimer-antibody combined immunological diagnosis kit for glypican-3
Glypican-3 (GPC3) is a promising new marker for hepatocellular carcinoma, but the reported values for serum GPC3 differ markedly between currently available kits. Here we isolated Affimer non-antibody binding proteins against GPC3 by phage display and developed a new sandwich chemiluminescence immunoassay (CLIA) combining an Affimer with a monoclonal antibody (Affimer-MAb CLIA). The proposed CLIA assay demonstrated a wide linear range 0.03–600 ng/mL) with a good linear correlation coefficient (0.9999), a high detection limitation (0.03 ng/mL) and specificity (0–0.002%) for detection of GPC3. The accuracy, hook effect and stability were demonstrated to be satisfactory. The mean level of GPC3 in serum was higher (>8.5 fold, P < 0.001) in hepatocellular carcinoma patients compared to healthy and other liver disease individuals. A poor correlation (correlation coefficients ranged from −0.286 to 0.478) was observed through pairwise comparison within different kits. However, only this newly developed CLIA test showed high specificity and correlated with the “gold standard” GPC3-immunohistochemistry. This study indicates that Affimer-MAb CLIA can be used to generate a sensitive immunodiagnostic kit, which offers the potential for a highly specific clinically-relevant detection system
Probing the atmosphere of a solar-like star by galactic microlensing at high magnification
We report a measurement of limb darkening of a solar-like star in the very
high magnification microlensing event MOA 2002-BLG-33. A 15 hour deviation from
the light curve profile expected for a single lens was monitored intensively in
V and I passbands by five telescopes spanning the globe. Our modelling of the
light curve showed the lens to be a close binary system whose centre-of-mass
passed almost directly in front of the source star. The source star was
identified as an F8-G2 main sequence turn-off star. The measured stellar
profiles agree with current stellar atmosphere theory to within ~4% in two
passbands. The effective angular resolution of the measurements is <1
micro-arcsec. These are the first limb darkening measurements obtained by
microlensing for a Solar-like star.Comment: Accepted for publication in A&A Letters. 5 pages, 2 embedded colour
ps figures plus 1 jpg figure. Version with all figures embedded available
from: http://www.roe.ac.uk/~iab/moa33paper
Recommended from our members
Conversion of holes into reducing species on surface modified small-particle TiO{sub 2}
Complexation of colloidal titanium dioxide nanoparticles (40 {angstrom}) by cysteine as a surface derivative was investigated by electron paramagnetic resonance (EPR) and infra-red (diffusion reflectance infra-red Fourier Transform DRIFT) spectroscopies. It was found that cysteine strongly binds to the colloid surface. The authors have demonstrated with EPR spectroscopy that cysteine modifies the TiO{sub 2} surface with formation of new trapping sites where photogenerated electrons and holes are localized. Illumination of cysteine modified TiO{sub 2} at 77K resulted in formation of a sulfur centered radical observed by EPR spectroscopy at 200 K. Upon addition of lead ions, a new complex of cysteine that bridges surface titanium atoms and lead ions was detected by IR spectroscopy. Illumination of lead/cysteine modified TiO{sub 2} did not result in the formation of sulfur centered radical, but symmetrical, lattice defect type EPR signal for trapped holes was observed. However, addition of methanol to this system resulted in the formation of {center_dot}CH{sub 2}OH radical following illumination at 8.2 K. After the temperature was raised to 120 K, doubling of the signal associated with electrons trapped at particle surface (Ti(3){sub surf}) was observed. On further increase of the temperature to 200 K the EPR signal for trapped electrons disappeared as a result of the reduction of Pb{sup 2+} ions, and metallic lead was observed to precipitate. Conversion of photogenerated holes into trapped electrons due to the presence of methanol doubles the yield of trapped electrons that can reduce Pb{sup 2+}. Direct reduction of Pb{sup 2+} ions by {center_dot}CH{sub 2}OH radical on TiO{sub 2} was not detected
Simultaneous Optical Model Analyses of Elastic Scattering, Breakup, and Fusion Cross Section Data for the He + Bi System at Near-Coulomb-Barrier Energies
Based on an approach recently proposed by us, simultaneous
-analyses are performed for elastic scattering, direct reaction (DR)
and fusion cross sections data for the He+Bi system at
near-Coulomb-barrier energies to determine the parameters of the polarization
potential consisting of DR and fusion parts. We show that the data are well
reproduced by the resultant potential, which also satisfies the proper
dispersion relation. A discussion is given of the nature of the threshold
anomaly seen in the potential
Structure of the mirror nuclei Be and B in a microscopic cluster model
The structure of the mirror nuclei Be and B is studied in a
microscopic and three-cluster model
using a fully antisymmetrized 9-nucleon wave function. The two-nucleon
interaction includes central and spin-orbit components and the Coulomb
potential. The ground state of Be is obtained accurately with the
stochastic variational method, while several particle-unbound states of both
Be and B are investigated with the complex scaling method.The
calculation for Be supports the recent identification for the existence of
two broad states around 6.5 MeV, and predicts the and
states at about 4.5 MeV and 8 MeV, respectively. The
similarity of the calculated spectra of Be and B enables one to
identify unknown spins and parities of the B states. Available data on
electromagnetic moments and elastic electron scatterings are reproduced very
well. The enhancement of the 1 transition of the first excited state in
Be is well accounted for. The calculated density of Be is found to
reproduce the reaction cross section on a Carbon target. The analysis of the
beta decay of Li to Be clearly shows that the wave function of Be
must contain a small component that cannot be described by the simple model. This small component can be well accounted for by extending a
configuration space to include the distortion of the -particle to
and partitions.Comment: 24 page
Ultraefficient Cap-Exchange Protocol To Compact Biofunctional Quantum Dots for Sensitive Ratiometric Biosensing and Cell Imaging
An ultra-efficient cap-exchange protocol (UCEP) that can convert hydrophobic quantum dots (QDs) into stable, biocompatible and aggregation-free water-dispersed ones at a ligand:QD molar ratio (LQMR) as low as 500, some 20-200 fold less than most literature methods has been developed. The UCEP works conveniently with air-stable lipoic acid (LA)-based ligands by exploiting tris(2-carboxylethyl phosphine) based rapid in situ reduction. The resulting QDs are compact (hydrodynamic radius, Rh, 90% of original fluorescence), resist nonspecific adsorption of proteins and display good stability in biological buffers even with high salt content (e.g. 2 M NaCl). These advantageous properties make them well-suited for cellular imaging and ratiometric biosensing applications. The QDs prepared by UCEP using dihydrolipoic acid (DHLA)-zwitterion ligand can be readily conjugated with octa-histidine (His8)-tagged antibody mimetic proteins (known as Affimers). These QDs allow rapid, ratiometric detection of the Affimer target protein down to 10 pM via a QD-sensitized Förster resonance energy transfer (FRET) readout signal. Moreover, compact biotinylated QDs can be readily prepared by UCEP in a facile, one-step process. The resulting QDs have been further employed for ratiometric detection of protein, exemplified by neutravidin, down to 5 pM, as well as for fluorescence imaging of target cancer cells
- …