201 research outputs found

    Development of High Ic Long REBCO Tapes with High Production Rate by PLD Method

    Get PDF
    AbstractWe have been developing long REBa2Cu3O7-δ coated conductors with high performance by the combination of the IBAD and the PLD methods. To realize the low production cost for REBa2Cu3O7-δ coated conductors, growth conditions were optimized for long tape fabrication in the “in-plume PLD method”. As a result, the Ic performance was confirmed with a high production rate under the high oxygen gas pressure and high laser energy density of > 800 mTorr and > 3J/cm2, respectively. We successfully fabricated a 35 m long GdBa2Cu3O7-δ coated conductor with high Ic value of 619 A/cm-w by the production rate of 30 m/h

    Combinatorial RNA Design: Designability and Structure-Approximating Algorithm

    Get PDF
    In this work, we consider the Combinatorial RNA Design problem, a minimal instance of the RNA design problem which aims at finding a sequence that admits a given target as its unique base pair maximizing structure. We provide complete characterizations for the structures that can be designed using restricted alphabets. Under a classic four-letter alphabet, we provide a complete characterization of designable structures without unpaired bases. When unpaired bases are allowed, we provide partial characterizations for classes of designable/undesignable structures, and show that the class of designable structures is closed under the stutter operation. Membership of a given structure to any of the classes can be tested in linear time and, for positive instances, a solution can be found in linear time. Finally, we consider a structure-approximating version of the problem that allows to extend bands (helices) and, assuming that the input structure avoids two motifs, we provide a linear-time algorithm that produces a designable structure with at most twice more base pairs than the input structure.Comment: CPM - 26th Annual Symposium on Combinatorial Pattern Matching, Jun 2015, Ischia Island, Italy. LNCS, 201

    Rational solutions of the discrete time Toda lattice and the alternate discrete Painleve II equation

    Get PDF
    The Yablonskii-Vorob'ev polynomials yn(t)y_{n}(t), which are defined by a second order bilinear differential-difference equation, provide rational solutions of the Toda lattice. They are also polynomial tau-functions for the rational solutions of the second Painlev\'{e} equation (PIIP_{II}). Here we define two-variable polynomials Yn(t,h)Y_{n}(t,h) on a lattice with spacing hh, by considering rational solutions of the discrete time Toda lattice as introduced by Suris. These polynomials are shown to have many properties that are analogous to those of the Yablonskii-Vorob'ev polynomials, to which they reduce when h=0h=0. They also provide rational solutions for a particular discretisation of PIIP_{II}, namely the so called {\it alternate discrete} PIIP_{II}, and this connection leads to an expression in terms of the Umemura polynomials for the third Painlev\'{e} equation (PIIIP_{III}). It is shown that B\"{a}cklund transformation for the alternate discrete Painlev\'{e} equation is a symplectic map, and the shift in time is also symplectic. Finally we present a Lax pair for the alternate discrete PIIP_{II}, which recovers Jimbo and Miwa's Lax pair for PIIP_{II} in the continuum limit h0h\to 0.Comment: 23 pages, IOP style. Title changed, and connection with Umemura polynomials adde

    A Reconstructed Discontinuous Galerkin Method for the Compressible Flows on Unstructured Tetrahedral Grids

    Full text link
    A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier-Stokes equations on unstructured tetrahedral grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier-Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need to judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on unstructured grids. The preliminary results indicate that this RDG method is stable on unstructured tetrahedral grids, and provides a viable and attractive alternative for the discretization of the viscous and heat fluxes in the Navier-Stokes equations

    An efficient genetic algorithm for structural RNA pairwise alignment and its application to non-coding RNA discovery in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aligning RNA sequences with low sequence identity has been a challenging problem since such a computation essentially needs an algorithm with high complexities for taking structural conservation into account. Although many sophisticated algorithms for the purpose have been proposed to date, further improvement in efficiency is necessary to accelerate its large-scale applications including non-coding RNA (ncRNA) discovery.</p> <p>Results</p> <p>We developed a new genetic algorithm, Cofolga2, for simultaneously computing pairwise RNA sequence alignment and consensus folding, and benchmarked it using BRAliBase 2.1. The benchmark results showed that our new algorithm is accurate and efficient in both time and memory usage. Then, combining with the originally trained SVM, we applied the new algorithm to novel ncRNA discovery where we compared <it>S. cerevisiae </it>genome with six related genomes in a pairwise manner. By focusing our search to the relatively short regions (50 bp to 2,000 bp) sandwiched by conserved sequences, we successfully predict 714 intergenic and 1,311 sense or antisense ncRNA candidates, which were found in the pairwise alignments with stable consensus secondary structure and low sequence identity (≤ 50%). By comparing with the previous predictions, we found that > 92% of the candidates is novel candidates. The estimated rate of false positives in the predicted candidates is 51%. Twenty-five percent of the intergenic candidates has supports for expression in cell, i.e. their genomic positions overlap those of the experimentally determined transcripts in literature. By manual inspection of the results, moreover, we obtained four multiple alignments with low sequence identity which reveal consensus structures shared by three species/sequences.</p> <p>Conclusion</p> <p>The present method gives an efficient tool complementary to sequence-alignment-based ncRNA finders.</p

    Pathogenesis of pili annulati

    Full text link
    Plucked scalp hairs and hair roots of pili annulati were examined to understand their pathogenesis. Stereoscopic examinations of hairs in transmitted light and/or reflected light and light microscopic surveys of the cross-sections of hairs confirmed that the cortical empty spaces appeared to be responsible to the unique dotted shiny appearance of the hairs seen by the unaided eyes under a refracted light. By transmission electron microscope, small vacuoles and dense bodies were observed in the cytoplasm of the differentiating cortical cells; subsequently, with increasing number of tonofilaments, an uneven distribution of free ribosomes occurred and abnormal spaces containing fine granular substances were formed in the cytoplasm of the cortical cells. Occasionally, extremely large cortical trichohyaline granules were found. In the keratinized hair, irregular empty spaces were present in the cortex of the abnormal hair segments. Histochemically, the keratinized cortex of the affected hairs always had more residual SH groups than the controls. Pili annulati may be a disorder of protein metabolism involving a partial dysfunction of cytoplasmic ribosomes, resulting in a lack of cortical keratin formation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47241/1/403_2004_Article_BF00440605.pd

    Heavy and light roles: myosin in the morphogenesis of the heart

    Get PDF
    Myosin is an essential component of cardiac muscle, from the onset of cardiogenesis through to the adult heart. Although traditionally known for its role in energy transduction and force development, recent studies suggest that both myosin heavy-chain and myosin lightchain proteins are required for a correctly formed heart. Myosins are structural proteins that are not only expressed from early stages of heart development, but when mutated in humans they may give rise to congenital heart defects. This review will discuss the roles of myosin, specifically with regards to the developing heart. The expression of each myosin protein will be described, and the effects that altering expression has on the heart in embryogenesis in different animal models will be discussed. The human molecular genetics of the myosins will also be reviewed
    corecore