2,414 research outputs found

    Picosecond time-resolved fluorescence spectra of photosystem I and II in Chlorella pyrenoidosa

    Get PDF
    AbstractPicosecond time-resolved fluorescence spectra emitted from intact cells of the green alga Chlorella pyrenoidosa have been measured by means of a new detection technique using a microchannel-plate photomultiplier. A fluorescence band (F700) was observed at 690–730 nm in the initial time region (0–180 ps), in addition to the well-known spectrum (F685) of photosystem II (PS II)-chlorophyll a (Chla) with a peak at 685 nm. F700 decays rapidly with lifetime of 104 ps, while F685 decays much more slowly in bi-exponential form with lifetimes of 0.64 and 1.7 ns. Appearance of F700 is independent of closure of the reaction center II (RC II). F700 is thus assigned to the fluorescence from PS I-Chl a, whose decay is governed by a fast energy transfer process from the antenna Chl aof PS I to P700 of RC I

    Strong electron correlations in the normal state of FeSe0.42Te0.58

    Get PDF
    We investigate the normal state of the '11' iron-based superconductor FeSe0.42Te0.58 by angle resolved photoemission. Our data reveal a highly renormalized quasiparticle dispersion characteristic of a strongly correlated metal. We find sheet dependent effective carrier masses between ~ 3 - 16 m_e corresponding to a mass enhancement over band structure values of m*/m_band ~ 6 - 20. This is nearly an order of magnitude higher than the renormalization reported previously for iron-arsenide superconductors of the '1111' and '122' families but fully consistent with the bulk specific heat.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let

    Control of a two-dimensional electron gas on SrTiO3(111) by atomic oxygen

    Get PDF
    We report on the formation of a two-dimensional electron gas (2DEG) at the bare surface of (111) oriented SrTiO3. Angle resolved photoemission experiments reveal highly itinerant carriers with a 6-fold symmetric Fermi surface and strongly anisotropic effective masses. The electronic structure of the 2DEG is in good agreement with self-consistent tight-binding supercell calculations that incorporate a confinement potential due to surface band bending. We further demonstrate that alternate exposure of the surface to ultraviolet light and atomic oxygen allows tuning of the carrier density and the complete suppression of the 2DEG.Comment: 5 pages, 4 figure

    Effect of Arbuscular Mycorrhizal Colonization on Early Growth and Nutrient Content of Two Peat­ Swamp Forest Tree Species Seedlings, Calophyllum Hosei and Ploiarium Alternifolium

    Full text link
    Tropical peat-swamp forests are one of the largest near-surface reserves of terrestrial organic carbon, but rnany peat-swamp forest tree species decreased due over-exploitation, forest fire and conversion of natural forests into agricultural lands. Among those species are slow-growing Calophyllum hoseiand Ploiarium alternifolium, two species are good for construction of boats, furniture, house building and considerable attention from pharmacological viewpoint for human healthly. This study was aimed at understanding the effects of arbuscular mycorrhizal (AM) fungi on early growth of C. hosei and P.alternifoliumunder greenhouse condition. Seedlings of C. hosei and P.alternifoliumwere inoculated with AM fungi: Glomus clarum and Glomus aggregatum ,or uninoculated under greenhouse condition during 6 months. AM colonization, plant growth, survival rate and nutrient content (P, Zn and B) were measured. The percentage of C. hoseiand P.alternifolium ranged from 27-32% and 18-19%, respectively. Both inoculated seedling species had greater plant height, diameter, leaf number, shoot and root dry weight than control seedlings. Nutrient content of inoculated plants were increased with AM colonization- Survival rates of inoculated plants were higher (100%) than those of control plants (67%). The results suggested that inoculation of AM fungi could improve the early growth of C. hoseiand P.alternifolium grown in tropical peat-swamp forest therefore this finding has greater potential impact if this innovative technology applied in field scales which are socially acceptable, commercially profitable and environmentally friendly

    Model for the hydration of non-polar compounds and polymers

    Full text link
    We introduce an exactly solvable statistical-mechanical model of the hydration of non-polar compounds, based on grouping water molecules in clusters where hydrogen bonds and isotropic interactions occur; interactions between clusters are neglected. Analytical results show that an effective strengthening of hydrogen bonds in the presence of the solute, together with a geometric reorganization of water molecules, are enough to yield hydrophobic behavior. We extend our model to describe a non-polar homopolymer in aqueous solution, obtaining a clear evidence of both ``cold'' and ``warm'' swelling transitions. This suggests that our model could be relevant to describe some features of protein folding.Comment: REVTeX, 6 pages, 3 figure

    A laser-ARPES study of LaNiO3 thin films grown by sputter deposition

    Full text link
    Thin films of the correlated transition-metal oxide LaNiO3_3 undergo a metal-insulator transition when their thickness is reduced to a few unit cells. Here, we use angle-resolved photoemission spectroscopy to study the evolution of the electronic structure across this transition in a series of epitaxial LaNiO3_3 films of thicknesses ranging from 19 to 2 u.c. grown in situ by RF magnetron sputtering. Our data show a strong reduction of the electronic mean free path as the thickness is reduced below 5 u.c. This prevents the system from becoming electronically two-dimensional, as confirmed by the largely unchanged Fermi surface seen in our experiments. In the insulating state we observe a strong suppression of the coherent quasiparticle peak but no clear gap. These features resemble previous observations of the insulating state of NdNiO3_3.Comment: Submitted to APL Material

    Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides

    Full text link
    The iron pnictide and chalcogenide compounds are a subject of intensive investigations due to their high temperature superconductivity.\cite{a-LaFeAsO} They all share the same structure, but there is significant variation in their physical properties, such as magnetic ordered moments, effective masses, superconducting gaps and Tc_c. Many theoretical techniques have been applied to individual compounds but no consistent description of the trends is available \cite{np-review}. We carry out a comparative theoretical study of a large number of iron-based compounds in both their magnetic and paramagnetic states. We show that the nature of both states is well described by our method and the trends in all the calculated physical properties such as the ordered moments, effective masses and Fermi surfaces are in good agreement with experiments across the compounds. The variation of these properties can be traced to variations in the key structural parameters, rather than changes in the screening of the Coulomb interactions. Our results provide a natural explanation of the strongly Fermi surface dependent superconducting gaps observed in experiments\cite{Ding}. We propose a specific optimization of the crystal structure to look for higher Tc_c superconductors.Comment: 5 pages, 3 figures with a 5-page supplementary materia

    Collapse of the Mott gap and emergence of a nodal liquid in lightly doped Sr2_2IrO4_4

    Get PDF
    Superconductivity in underdoped cuprates emerges from an unusual electronic state characterised by nodal quasiparticles and an antinodal pseudogap. The relation between this state and superconductivity is intensely studied but remains controversial. The discrimination between competing theoretical models is hindered by a lack of electronic structure data from related doped Mott insulators. Here we report the doping evolution of the Heisenberg antiferromagnet Sr2_2IrO4_4, a close analogue to underdoped cuprates. We demonstrate that metallicity emerges from a rapid collapse of the Mott gap with doping, resulting in lens-like Fermi contours rather than disconnected Fermi arcs as observed in cuprates. Intriguingly though, the emerging electron liquid shows nodal quasiparticles with an antinodal pseudogap and thus bares strong similarities with underdoped cuprates. We conclude that anisotropic pseudogaps are a generic property of two-dimensional doped Mott insulators rather than a unique hallmark of cuprate high-temperature superconductivity

    Specific-heat study of superconducting and normal states in FeSe1-xTex (0.6<=x<=1) single crystals: Strong-coupling superconductivity, strong electron-correlation, and inhomogeneity

    Full text link
    The electronic specific heat of as-grown and annealed single-crystals of FeSe1-xTex (0.6<=x<=1) has been investigated. It has been found that annealed single-crystals with x=0.6-0.9 exhibit bulk superconductivity with a clear specific-heat jump at the superconducting (SC) transition temperature, Tc. Both 2Delta_0/kBTc [Delta_0: the SC gap at 0 K estimated using the single-band BCS s-wave model] and Delta C/(gamma_n-gamma_0)Tc [Delta C$: the specific-heat jump at Tc, gamma_n: the electronic specific-heat coefficient in the normal state, gamma_0: the residual electronic specific-heat coefficient at 0 K in the SC state] are largest in the well-annealed single-crystal with x=0.7, i.e., 4.29 and 2.76, respectively, indicating that the superconductivity is of the strong coupling. The thermodynamic critical field has also been estimated. gamma_n has been found to be one order of magnitude larger than those estimated from the band calculations and increases with increasing x at x=0.6-0.9, which is surmised to be due to the increase in the electronic effective mass, namely, the enhancement of the electron correlation. It has been found that there remains a finite value of gamma_0 in the SC state even in the well-annealed single-crystals with x=0.8-0.9, suggesting an inhomogeneous electronic state in real space and/or momentum space.Comment: 22 pages, 1 table, 6 figures, Version 2 has been accepted for publication in J. Phys. Soc. Jp

    ELF3 is an antagonist of oncogenic-signalling-induced expression of EMT-TF ZEB1

    Get PDF
    Background: Epithelial-to-mesenchymal transition (EMT) is a key step in the transformation of epithelial cells into migratory and invasive tumour cells. Intricate positive and negative regulatory processes regulate EMT. Many oncogenic signalling pathways can induce EMT, but the specific mechanisms of how this occurs, and how this process is controlled are not fully understood. Methods: RNA-Seq analysis, computational analysis of protein networks and large-scale cancer genomics datasets were used to identify ELF3 as a negative regulator of the expression of EMT markers. Western blotting coupled to siRNA as well as analysis of tumour/normal colorectal cancer panels was used to investigate the expression and function of ELF3. Results: RNA-Seq analysis of colorectal cancer cells expressing mutant and wild-type β-catenin and analysis of colorectal cancer cells expressing inducible mutant RAS showed that ELF3 expression is reduced in response to oncogenic signalling and antagonizes Wnt and RAS oncogenic signalling pathways. Analysis of gene-expression patterns across The Cancer Genome Atlas (TCGA) and protein localization in colorectal cancer tumour panels showed that ELF3 expression is anti-correlated with β-catenin and markers of EMT and correlates with better clinical prognosis. Conclusions: ELF3 is a negative regulator of the EMT transcription factor (EMT-TF) ZEB1 through its function as an antagonist of oncogenic signalling
    • …
    corecore