1,943 research outputs found

    Conformal Geometry of Sequential Test in Multidimensional Curved Exponential Family

    Full text link
    This article presents a differential geometrical method for analyzing sequential test procedures. It is based on the primal result on the conformal geometry of statistical manifold developed in Kumon, Takemura and Takeuchi (2011). By introducing curvature-type random variables, the condition is first clarified for a statistical manifold to be an exponential family under an appropriate sequential test procedure. This result is further elaborated for investigating the efficient sequential test in a multidimensional curved exponential family. The theoretical results are numerically examined by using von Mises-Fisher and hyperboloid models

    Global dust model intercomparison in AeroCom phase I

    Get PDF
    This study presents the results of a broad intercomparison of a total of 15 global aerosol models within the AeroCom project. Each model is compared to observations related to desert dust aerosols, their direct radiative effect, and their impact on the biogeochemical cycle, i.e., aerosol optical depth (AOD) and dust deposition. Additional comparisons to Angström exponent (AE), coarse mode AOD and dust surface concentrations are included to extend the assessment of model performance and to identify common biases present in models. These data comprise a benchmark dataset that is proposed for model inspection and future dust model development. There are large differences among the global models that simulate the dust cycle and its impact on climate. In general, models simulate the climatology of vertically integrated parameters (AOD and AE) within a factor of two whereas the total deposition and surface concentration are reproduced within a factor of 10. In addition, smaller mean normalized bias and root mean square errors are obtained for the climatology of AOD and AE than for total deposition and surface concentration. Characteristics of the datasets used and their uncertainties may influence these differences. Large uncertainties still exist with respect to the deposition fluxes in the southern oceans. Further measurements and model studies are necessary to assess the general model performance to reproduce dust deposition in ocean regions sensible to iron contributions. Models overestimate the wet deposition in regions dominated by dry deposition. They generally simulate more realistic surface concentration at stations downwind of the main sources than at remote ones. Most models simulate the gradient in AOD and AE between the different dusty regions. However the seasonality and magnitude of both variables is better simulated at African stations than Middle East ones. The models simulate the offshore transport of West Africa throughout the year but they overestimate the AOD and they transport too fine particles. The models also reproduce the dust transport across the Atlantic in the summer in terms of both AOD and AE but not so well in winter-spring nor the southward displacement of the dust cloud that is responsible of the dust transport into South America. Based on the dependency of AOD on aerosol burden and size distribution we use model bias with respect to AOD and AE to infer the bias of the dust emissions in Africa and the Middle East. According to this analysis we suggest that a range of possible emissions for North Africa is 400 to 2200 Tg yr-1 and in the Middle East 26 to 526 Tg yr-1

    2D Fourier Transform Spectroscopy of exciton-polaritons and their interactions

    Get PDF
    We investigate polariton-polariton interactions in a semiconductor microcavity through two-dimensional Fourier transform (2DFT) spectroscopy. We observe, in addition to the lower-lower and the upper-upper polariton self-interaction, a lower-upper cross-interaction. This appears as separated peaks in the on-diagonal and off-diagonal part of 2DFT spectra. Moreover, we elucidate the role of the polariton dispersion through a fine structure in the 2DFT spectrum. Simulations, based on lower-upper polariton basis Gross-Pitaevskii equations including both self and cross-interactions, result in a 2DFT spectra in qualitative agreement with experiments

    Plasmonic Oleylamine-Capped Gold and Silver Nanoparticle-Assisted Synthesis of Luminescent Alloyed CdZnSeS Quantum Dots

    Get PDF
    We report on a novel strategy to tune the structural and optical properties of luminescent alloyed quantum dot (QD) nanocrystals using plasmonic gold (Au) and silver (Ag) nanoparticles (NPs). Alloyed CdZnSeS QDs were synthesized via the organometallic synthetic route with different fabrication strategies that involve alternative utilization of blends of organic surfactants, ligands, capping agents, and plasmonic oleylamine (OLA)-functionalized AuNPs and AgNPs. Ligand exchange with thiol l-cysteine (l-cyst) was used to prepare the hydrophilic nanocrystals. Analysis of the structural properties using powder X-ray diffraction revealed that under the same experimental condition, the plasmonic NPs altered the diffractive crystal structure of the alloyed QDs. Depending on the fabrication strategy, the crystal nature of OLA-AuNP-assisted CdZnSeS QDs was a pure hexagonal wurtzite domain and a cubic zinc-blende domain, whereas the diffraction pattern of OLA-AgNP-assisted CdZnSeS QDs was dominantly a cubic zinc-blende domain. Insights into the growth morphology of the QDs revealed a steady transformation from a heterogeneous growth pattern to a homogenous growth pattern that was strongly influenced by the plasmonic NPs. Tuning the optical properties of the alloyed QDs via plasmonic optical engineering showed that the photoluminescence (PL) quantum yield (QY) of the AuNP-assisted l-cyst-CdZnSeS QDs was tuned from 10 to 31%, whereas the PL QY of the AgNP-assisted l-cyst-CdZnSeS QDs was tuned from 15 to 90%. The low PL QY was associated with the surface defect state, while the remarkably high PL QY exhibited by the AgNP-assisted l-cyst-CdZnSeS QDs lends strong affirmation that the fabrication strategy employed in this work provides a unique opportunity to create single ensemble, multifunctional, highly fluorescent alloyed QDs for tailored biological applications
    corecore