321 research outputs found

    Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits

    Get PDF
    An optical isolator for transverse electric (TE) polarized light is demonstrated by adhesive bonding of a ferrimagnetic garnet die on top of a 380 nm thick silicon waveguide circuit. Polarization rotators are implemented in the arms of a nonreciprocal Mach-Zehnder interferometer to rotate the polarization to transverse magnetic in the nonreciprocal phase shifter regions. Calculation of the nonreciprocal phase shift (NRPS) as a function of bonding layer thickness experienced by the TM mode in the interferometer arms is presented, together with the simulation of the robustness of the polarization rotator. Experimentally, 32 dB isolation is measured at 1540.5 nm wavelength using a magnetic field transverse to the light propagation directions. This paves the way to the cointegration of laser diodes and optical isolators on a silicon photonics platform

    Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells

    Get PDF
    Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization

    The 4 per 1000 initiative.

    Get PDF
    Soil organic matter is at the nexus of global challenges: food security, climate change adaptation and mitigation, soil security. The 4 per 1000 initiative, launched at the Climate COP21 within the Lima-Paris Action Agenda proposes to increase soil organic carbon (SOC) stocks to simultaneously address all these challenges. It directly addresses three sustainable development goals: SDG2 ?no hunger?, SDG13 ?Climate action?, and SDG15 ?Life on land? and indirectly concerns several others. The initiative targets agricultural soils in priority, which are often the most degraded soils and because of the high expected benefits in terms of soil fertility and hence of productivity. A range of agricultural practices are available that allow to increase SOC stocks while ensuring a resilient, productive and environmentally friendly agriculture, so that a large-scale deployment can be aimed at. Here, we review and discuss the main limits and criticisms addressed to the 4 per 1000 initiative

    Reduced Retinal Function in the Absence of Nav1.6

    Get PDF
    Background: Mice with a function-blocking mutation in the Scn8a gene that encodes Nav1.6, a voltage-gated sodium channel (VGSC) isoform normally found in several types of retinal neurons, have previously been found to display a profoundly abnormal dark adapted flash electroretinogram. However the retinal function of these mice in light adapted conditions has not been studied. Methodology/Principal Findings: In the present report we reveal that during light adaptation these animals are shown to have electroretinograms with significant decreases in the amplitude of the a- and b-waves. The percent decrease in the a-and b-waves substantially exceeds the acute effect of VGSC block by tetrodotoxin in control littermates. Intravitreal injection of CoCl 2 or CNQX to isolate the a-wave contributions of the photoreceptors in littermates revealed that at high background luminance the cone-isolated component of the a-wave is of the same amplitude as the a-wave of mutants. Conclusions/Significance: Our results indicate that Scn8a mutant mice have reduced function in both rod and the cone retinal pathways. The extent of the reduction in the cone pathway, as quantified using the ERG b-wave, exceeds the reduction seen in control littermates after application of TTX, suggesting that a defect in cone photoreceptors contributes to the reduction. Unless the postreceptoral component of the a-wave is increased in Scn8a mutant mice, the reduction in the b-wave is larger than can be accounted for by reduced photoreceptor function alone. Our data suggests that th

    Breathing adapted radiotherapy: a 4D gating software for lung cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Physiological respiratory motion of tumors growing in the lung can be corrected with respiratory gating when treated with radiotherapy (RT). The optimal respiratory phase for beam-on may be assessed with a respiratory phase optimizer (RPO), a 4D image processing software developed with this purpose.</p> <p>Methods and Materials</p> <p>Fourteen patients with lung cancer were included in the study. Every patient underwent a 4D-CT providing ten datasets of ten phases of the respiratory cycle (0-100% of the cycle). We defined two morphological parameters for comparison of 4D-CT images in different respiratory phases: tumor-volume to lung-volume ratio and tumor-to-spinal cord distance. The RPO automatized the calculations (200 per patient) of these parameters for each phase of the respiratory cycle allowing to determine the optimal interval for RT.</p> <p>Results</p> <p>Lower lobe lung tumors not attached to the diaphragm presented with the largest motion with breathing. Maximum inspiration was considered the optimal phase for treatment in 4 patients (28.6%). In 7 patients (50%), however, the RPO showed a most favorable volumetric and spatial configuration in phases other than maximum inspiration. In 2 cases (14.4%) the RPO showed no benefit from gating. This tool was not conclusive in only one case.</p> <p>Conclusions</p> <p>The RPO software presented in this study can help to determine the optimal respiratory phase for gated RT based on a few simple morphological parameters. Easy to apply in daily routine, it may be a useful tool for selecting patients who might benefit from breathing adapted RT.</p

    Mice with Different Susceptibility to Japanese Encephalitis Virus Infection Show Selective Neutralizing Antibody Response and Myeloid Cell Infectivity

    Get PDF
    Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes public health problems in Asian countries. Only a limited number of JEV-infected individuals show symptoms and develop severe encephalitis, indicating host-dependent susceptibilities.C3H/HeN and DBA/2 mice, which exhibit different mortalities when infected by intraperitoneal inoculation with JEV, were used as experimental models to compare viral pathogenesis and host responses. One hundred infectious virus particles killed 95% of C3H/HeN mice whereas only 40% of DBA/2 mice died. JEV RNA was detected with similar low levels in peripheral lymphoid organs and in the sera of both mouse strains. High levels of viral and cytokine RNA were observed simultaneously in the brains of C3H/HeN and DBA/2 mice starting on days 6 and 9 post-infection, respectively. The kinetics of the cytokines in sera correlated with the viral replication in the brain. Significantly earlier and higher titers of neutralizing antibodies were detected in the DBA/2 strain. Primary embryonic fibroblasts, bone marrow-derived dendritic cells and macrophages from the two mouse strains were cultured. Fibroblasts displayed similar JEV replication abilities, whereas DBA/2-derived myeloid antigen-presenting cells had lower viral infectivity and production compared to the C3H/HeN–derived cells. may be elements associated with late and decreased mouse neuroinvasion

    Combined treatment modality for intracranial germinomas: results of a multicentre SFOP experience

    Get PDF
    Conventional therapy for intracranial germinomas is craniospinal irradiation. In 1990, the Société Française d'Oncologie Pédiatrique initiated a study combining chemotherapy (alternating courses of etoposide–carboplatin and etoposide–ifosfamide for a recommended total of four courses) with 40 Gy local irradiation for patients with localized germinomas. Metastatic patients were allocated to receive low-dose craniospinal radiotherapy. Fifty-seven patients were enrolled between 1990 and 1996. Forty-seven had biopsy-proven germinoma. Biopsy was not performed in ten patients (four had diagnostic tumour markers and in six the neurosurgeon felt biopsy was contraindicated). Fifty-one patients had localized disease, and six leptomeningeal dissemination. Seven patients had bifocal tumour. All but one patient received at least four courses of chemotherapy. Toxicity was mainly haematological. Patients with diabetus insipidus (n = 25) commonly developed electrolyte disturbances during chemotherapy. No patient developed tumour progression during chemotherapy. Fifty patients received local radiotherapy with a median dose of 40 Gy to the initial tumour volume. Six metastatic patients, and one patient with localized disease who stopped chemotherapy due to severe toxicity, received craniospinal radiotherapy. The median follow-up for the group was 42 months. Four patients relapsed 9, 10, 38 and 57 months after diagnosis. Three achieved second complete remission following salvage treatment with chemotherapy alone or chemo-radiotherapy. The estimated 3-year survival probability is 98% (CI: 86.6–99.7%) and the estimated 3-year event-free survival is 96.4% (CI: 86.2–99.1%). This study shows that excellent survival rates can be achieved by combining chemotherapy and local radiotherapy in patients with non-metastatic intracranial germinomas. © 1999 Cancer Research Campaig
    corecore